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We propose a modular and full-fledged physical layer receiver design for Orthogonal Frequency Division
Multiplexing (OFDM) wireless systems leveraging the advances of deep neural networks (DNN). We adopt
a detailed modular design that includes proper and utmost domain knowledge in each element and train it
using data collected both via simulations as well as over-the-air and emulated wireless transmissions. We then
unify all the modules into an end-to-end automated deep learning-based wide-band receiver and fine-tune it

to further improve its accuracy. Our combined pipeline analysis exhibits superior performance by showing bit
error rate values up to 8 times lower if compared to the traditional approaches for wireless communications.

1. Introduction

Wireless networking systems heavily rely upon well-defined func-
tionalities and procedures that are implemented and executed at several
layers of the protocol stack. At the bottom of the protocol stack, we find
the physical layer which interfaces the transceiver with the wireless
channel and is in charge of the challenging task of translating wireless
waveforms into information bits, and vice versa. This is an essential
task, because any errors occurring at the physical layer will inevitably
propagate to all upper layers, eventually resulting in erroneous com-
munications and performance degradation. For this reason, the design
of the physical layer for wireless communications has been largely built
upon rigorous and well-established signal processing (e.g., modulation,
multiplexing) and coding (e.g., Forward Error Correction (FEC) or
channel coding) algorithms that aim at reducing the risk of such errors
to a minimum.

Although these powerful tools have proved themselves to be reliable
and effective in many practical applications, they still rely upon several
assumptions on the nature of the wireless channel, its noise, the inter-
ference, and the features of the hardware components. For example,
the noise on the channel is commonly assumed to follow a Gaussian
distribution, multipath fading channel is treated as a linear time in-
variant system [1,2], and there always exists some form of stationarity
assumption. Similarly, hardware components (e.g., power amplifiers,
mixers, ADC/DAC) often have nonlinear responses [3], which distort
electromagnetic signals. Despite these assumptions facilitate the study,
modeling, design and implementation of such solutions, the obtained
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models can only approximate — or completely neglect in some cases —
non-stationary and non-linear effects that characterize wireless systems,
which eventually results in bottlenecks and sub-optimal performance.

In this paper, we aim at relaxing those assumptions to develop a
wireless networking system capable of providing reliable and high-
performance communications even in the case where none of the above
assumptions hold. Indeed, to capture and compensate for the sources of
nonlinear distortion, we need nonlinear expressive functions. Thanks to
their inherent nature of being universal function approximators, deep
neural networks — and in general machine learning approaches — have
found their way into the design and development of wireless communi-
cations [4-14]. Being able to adapt to time-varying channel conditions
and to capture non-linearities make deep learning one of the most
promising technologies to build next-generation wireless networks. Part
of what makes these models achieve comparable, and at times supe-
rior, performance w.r.t traditional models is the fact that they do not
require any a priori information regarding the wireless system model.
Therefore, deep learning-based solutions are less prone to inaccuracies
and approximations baked in the model, and can thus learn their own
representation of the model and detect the most relevant features as
demonstrated in [15,16].

We advance the field of deep learning-based wireless networking
systems by presenting a totally modular and full-fledged physical layer
receiver design for OFDM-based wireless networks. OFDM is a popular
multicarrier modulation scheme for wireless communications with a
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variety of advantages ranging from robustness to multipath propa-
gation to efficient practical implementation, among others. Similar
to traditional solutions, our system embeds modules for IQ symbol
demodulation, channel estimation, equalization and FEC decoding.
Different from traditional solutions, each component in our system
leverages deep neural networks to recover transmitted data bits and
mitigate the impact of non-linearities and non-stationarities on the
decoding process. Our system leverages a modular design where each
module is designed to accomplish a single task. At the same time, all
modules are trained in synergy to improve not only the effectiveness
of each individual task, but also to achieve superior performance in
collaboration with other modules.

With the goal of making our system robust against non-stationarities
and non-linearities, as well as encouraging our neural networks to
generalize across different — and possibly unseen — channel conditions,
we train each module by using a combination of simulated and real
data. Specifically, we have collected more than 60 GB of data generated
both via simulations as well as by collecting over-the-air data using
the Arena testbed [17], and emulated data using Colosseum wireless
emulator [18]. Arena is an open-access wireless testing platform based
on a grid of antennas mounted on the ceiling of a large office-space
environment. Arena allows data collection in a real-world wireless
deployment with diverse multipath, fading, scattering and path-loss
conditions, which makes it a valuable source of nonlinear phenomena.
Colosseum is the world’s largest wireless emulator equipped with a
large-scale emulation environment employed for experimentation in
wireless systems.

In the first part of the paper, we design each module of our receiver
based on their inherit characteristics using the well celebrated multi-
layer perceptrons (MLPs) and recurrent neural networks (RNNs). MLPs
are simple and fast-to-train architectures deployed when we either
have a relatively low-dimensional input vector, or we do not have
temporal dependencies among elements of our input vector. RNNs, on
the other hand, operate based on a shared-weight architecture across
the time sequences to capture temporal dependencies. We describe the
methodology for each module in Section 2. We then provide the perfor-
mance analysis and bit error rate comparison with baseline solutions in
Section 3. Additionally, we combine all the pre-trained modules to form
an end-to-end unified framework for automated wide-band receiver and
demonstrate how this combined framework improves on module-based
training. Finally, we provide an optimized compression technique for
FPGA implementation in Section 4 and conclude the paper in Section 5.

2. Receiver modules design

We consider a standard wide-band OFDM system whose receiver
processing chain, shown in Fig. 1, is composed of smaller modules in-
cluding synchronization, channel estimation and equalization, IQ sym-
bol demodulation, and error correction. These blocks use the classical
signal processing methods for wireless channel parameters estimation,
noise reduction, and eventually efficient recovery of the transmitted
symbols and bits. The fundamental assumption in such systems is that
the multipath fading channel acts as a linear system and, therefore,
the received signal after channel effects can be expressed in the form
of a convolution between the transmitted signal x(r) and channel h(r)
plus additive white Gaussian noise (AWGN) as y(t) = h(t) * x(t) + n(?).
The goal is to recover the transmitted symbols encoded in x(¢) from the
received signal y(r). We begin by briefly explaining what the standard
pipeline accomplishes and then elaborate on each proposed module
independently.

We denote a discrete time transmitted OFDM symbol in the time
domain as x, its sample at discrete time n as x[n], its FFT as X, and its
FFT at kth frequency bin as X[k]. We use a similar notation for received
OFDM symbol y and channel impulse response h. Throughout the paper
the coded bits and source bits are denoted as ¢ and b, respectively.
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We decompose the receiver chain into four major units depicted in
Fig. 2(a): (i) channel estimator, (ii) channel equalizer, (iii) demapper,
and (iv) decoder. This pipeline can be described as follows. The re-
ceived OFDM preamble y? is transformed into the frequency-domain
via FFT. It is then multiplied by inverse of a diagonal matrix containing
the transmitted BPSK-modulated preamble to predict the channel fre-
quency response H. Using the estimated channel, the received OFDM
symbol y is equalized, after FFT, by getting multiplied by another
diagonal matrix composed of inverses of the elements of H to produce
noisy IQ symbols X. The noisy IQ symbols are then transformed to the
most likely sequences of coded bits ¢ (or their probability, or their log-
likelihood ratio), and finally to the most likely source bits b through
Viterbi algorithm.

We propose to meticulously replace these main modules with their
neural network counterparts, as shown in Fig. 2(b). This design extends
the traditional solution into a more generalizable framework that allevi-
ates the shortcomings of the linear assumption by using the expressive
power of neural networks in approximating nonlinear functions. The
rest of this section covers the methodology behind each of the modules
and their custom design.

2.1. Channel estimation & equalization

The classical channel estimation and equalization in an OFDM
system is based on the least square (LS) estimation and convolution the-
orem. According to the LS estimation, the channel frequency response
for each sub-band is calculated by averaging two channel estimates,
each of which is computed by dividing the received preamble Y‘E’I' Z] by
the transmitted preamble X?¢ in the frequency domain, as:

N 1 Y[k

H[k]_zigzxpr—%, fork=1,...,52. @
where H[k] denotes the estimated frequency response of the channel
at sub-band k. The BPSK modulated signal, X?", is replicated twice to
compose the transmission preamble. The received preamble comprises
Y™ and Y, each corresponding to one copy of the X?* going through
the multipath fading channel. The estimated channel is then used
to equalize the received signal, Y, and retrieve the unknown coded
data symbols, X, in the frequency domain by applying the same LS
estimation using the estimated channel frequency response, H, from
(1), as:

Sk = YA

= — , 2
HIKIAK]* + 02 @

where o2 is the noise power of the received signal.

2.1.1. Channel estimation neural network

We propose to replace both channel estimation and channel equal-
ization algorithms with neural network-based models that enhance the
traditional solution and account for possible non-ideal effects such
as non-linearities or non-Gaussianity of the channel. The motivation
behind this is that in practice, we may have nonlinear components
in the communication system (e.g., nonlinear amplifiers) that affect
the channel impulse response and make the linear assumptions and,
hence, the convolution theorem invalid when estimating the channel
impulse response. We use an MLP architecture, denoted as Net,, that
takes as input the received preamble y”¢ in the time domain and
estimates the channel response H in the output. Our strategy is to
replace the traditional division in the frequency domain with a MLP
to account for channel distortions and variations in the estimation
process. Specifically, we use two parallel, identical and independent
MLP structures modeling the real and imaginary parts of the channel,
respectively. Both MLPs are fed with the received preamble signal
yPre € C1%0 a5 inputs (in time domain, i.e., before FFT) and output the
channel estimation AY . € C, with v denoting the real or imaginary
part.
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Fig. 1. Receiver chain for IEEE 802.11 Non-HT packet transmission.
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Fig. 2. (a) Traditional receiver pipeline. The FFT blocks denotes fast Fourier transform, the D;(' represents a diagonal matrix containing the inverses of vector X, the LLR() is
the log likelihood ratio, and Vit(.) is the output of the Viterbi algorithm. (b) Proposed receiver pipeline. Four main modules are replaced with appropriate deep neural networks.

Our training approach consists of two strategies for making the
model robust to (i) noise-plus-interference variations and (ii) signal
power level. Specifically, training pilot signals are collected during sim-
ulation with noiseless channel instances and traditional LS estimation
is used to compute channel state information (CSI), which is known to
perform as an optimal minimum mean square error (MMSE) estimation
under noiseless conditions. Similar to the noise model in [19], in order
to make our model robust against noise variation, we augment the
training data samples yP'® by adding artificial white Gaussian noise,
with noise variance adjusted to produce different signal-to-noise ratio
(SNR) levels. We refer to this approach as de-noising training approach.
Our training data is composed of input-output pairs { yf) e, I:IZ sitimr
with ) being the noiseless preamble signals and H} . being the LS
estimate of the channel in the noiseless case. The power of the Gaussian
noise was selected randomly for each training batch to produce SNR
values of {0, 10, 20, 30,100} dB.

Furthermore, we perform RMS-normalization of each input signal
in the training batch. This normalization enforces each input signal
to have a nominal power of 0 dBW and makes our framework im-
mune to the power variations in the input signal due to user mobility
and multipath propagation effects in real experimental setups. The
RMS-normalization is computed as follows:

§, = ———— ®3)

s
N
where s is the original signal, s, is the resulting normalized signal, s; is
the ith complex symbol of the signal, and the denominator corresponds
to the RMS factor. Once the pilot signals are normalized, the relative
channel estimation output must be normalized as well. Therefore, the
CSI estimation output from the DNN has to be scaled again using the
same RMS factor, which is computed for each specific input signal.

Fig. 3 depicts the power normalization process in relation to the Chan-
nel Estimation DNN model at the time of inference. Both MLP models
associated with the CSI estimation for real and imaginary domains are
trained in a regression fashion. The Loss function adopted for training
each MLP is the minimum square error (MSE) loss and is expressed on
an input-output sample basis as:

K

1 2 .
L(Hpyn Hig) = 2 2, (Hpyy = Hig)", v={real, img) @
k=1
with
HY v = MLP"(5%%). )

For a detailed description regarding the architecture of both MLPs refer
to Table 1.

2.1.2. Channel estimation correction neural network

The channel estimation correction model is a DNN that takes in
both preamble and data signal. The goal of this module is to improve
the accuracy of channel estimation by incorporating additional inputs.
The structure of this DNN is shown in Fig. 4, where Net, represents
the previously explained channel estimation model, and PE, PC and EQ
blocks are the phase estimation (PE), phase correction (PC) and linear
equalization (EQ) units, respectively. The cpe unit represents the phase
correction estimator and Y, denotes the unequalized data corrected by
the PC block. The NN block is the neural network for channel correction
(see Table 1 for the details regarding the neural network architectures).
The loss function is defined as:

L(X, %pitor) = W logWN(Spitor) + (1 = W) log(N g py (X)) (6)

where log(N(%y10¢)) is the log-likelihood of %4, which is assumed to
have a Gaussian distribution, log(\N,, (X)) is the log-likelihood of X,
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Table 1
Neural network architectures for different modules.
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Channel estimator

Layer Input Output # weights Activation
Dense 2 x 160 2 x 512 2 x 81920 ReLu
Dense 2 x 512 2 x 256 2 x 131072 ReLu
Dense 2 x 256 2 x 52 2 x 13312 -
Channel corrector

Layer Input Output # weights Activation
Dense 8464 20 169280 Softplus
Dense 20 104 2080 -

Dense 208 104 21632 -

Channel equalizer

Layer Input Output # weights Activation
Dense 96 96 9216 softplus
Dense 96 96 9216 -

Dense 192 96 18432 -
Demapper

Layer Input Output # weights Activation
Dense 2 20 20 ReLu
Dense 20 4 80 Sigmoid
FEC Decoder

Layer Input Output # weights Activation

RNN (3-layered GRU) (35x2+20,2) (35x2+20,512) 2.8M Tanh & Sigmoid
Dense (20,512) (20, 16) 8208 Relu

dense (20, 16) (20, 1) 17 Sigmoid

Fig. 3. RMS normalization scheme applied to the input and output of the channel estimation DNN model.

Yy +n Nety
N EQ
. S ;
Hy \wwy Q(YmH) X—
y+n | NN
PE v PC v
v 4>[f(Yp*e,ﬁ,XW> g(Y, cpe)

Fig. 4. Training block diagram for channel estimation correction model implemented
with MLP.

and is assumed to have a Gaussian mixture distribution since the true
value of the equalized signal is unknown, and W is a regularization
weight to balance the influence of these two terms in the loss function.
Here, log(N )y, M(f( )) keeps the output X in the range of the classical
estil}lation, while logN(Xpitor)) further refines the estimation accuracy
of X. Adopting the loss in equation (6), the equalization block is
totally included in the loss function to achieve optimal performance di-
rectly on equalized symbol estimations rather than focusing on channel
estimation alone.

2.1.3. Channel equalization neural network

The channel equalization neural network maps the OFDM received
samples to their corresponding IQ symbols and is composed of a linear
trend plus a nonlinear fluctuation. This module uses the estimated
channel, provided by the channel estimation module, in its linear part
and at the same time, models any nonlinear fluctuation with a parallel
neural network structure (see Fig. 2(b)). This NN structure captures
possible non-ideal effects such as non-linearities or non-Gaussianity of
the channel. The model is initialized with the optimal least square
solution under the assumption of linear Gaussian noise, therefore, all
biases and weights of non-linear part were initialized with zeros.

2.2. 1Q symbol demodulation

In a traditional OFDM system, a demodulator or demapper (see (III)
in Fig. 2(a)) estimates the coded bits from equalized IQ symbols X. The
estimated coded bits can take the form of actual bits ¢, in which case we
call it a hard demapper, or it can be the probability or the log-likelihood
ratio of the coded bits, in which case we call it a soft demapper. In
an M-QAM modulation, there are M origins or possible values for the
IQ symbols. In the hard demapping approaches, the noise variance of
equalized IQ symbols around those origins are calculated. Each of the
IQ symbols is then assigned to one of these origins (hard decision)
in such a way that the likelihood of them coming from a Gaussian
distribution with IQ symbol value as its mean and noise variance as its
variance is maximized. These hard decisions are converted back to the
corresponding bits. In the soft demapping approach, a Log Likelihood
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Fig. 5. Network model for RNN-based convolutional code decoder (Ner,) with three
GRU layers.

Ratio (LLR) value is calculated for each bit, based on the probability of
the bit as:

()

LLR() = 10g< P =01X) > )

P@E=1|X)

We aim to replace the traditional demapper block with a neural
network (denoted as Ner, in Fig. 2(a)) optimized for performing the
demodulation task. The neural network architecture is a dense network
with two fully connected layers (see Table 1 for details regarding the ar-
chitecture). The input to the neural network is an equalized IQ symbol
with I and Q (real and imaginary parts) coming in separate channels.
For the loss function, we use binary cross-entropy which optimizes each
output separately for true labels of ‘0’ and ‘1’ representing the true
coded bits. Hence, the output of the neural network for each input
symbol is a vector of size four corresponding to the probability of each
bit to be ‘1°.

2.3. Forward error correction decoding

The IEEE 802.11 Non-HT transmission standard employs convo-
lutional codes as its forward error correction (FEC) scheme and the
well-known Viterbi algorithm for FEC decoding. The Viterbi decoder
takes a sequence of coded symbols, either in the form of bits (hard
decoding) or in the form of the probability of the bits (soft decoding),
and returns a bit sequence as the estimate of source bits.

In the neural network decoder denoted as Net, in Fig. 2(b), we aim
at mimicking the operation of the traditional Viterbi decoding algo-
rithm, and surpassing its performance via an RNN-based architecture.
The RNN decoder consists of three RNN layers and two dense layers, as
shown in Fig. 5 (see Table 1 for architecture details). The NN decoder
takes the sequence of IQ symbol estimates per packet in the form of
the posterior probability of coded bits P(¢ = 1|X) as input, and the
probability of source bits b to be ‘1’ (i.e., P(b = 1| X)) as output. As we
already have access to the log likelihood ratio (LLR) values of coded
bits LLR(c) (discussed in the previous subsection), we compute the
posterior probability as:

exp (~LLR(¢))
1 +exp (-LLR(&))’
where the minus before LLR(.) comes from the definition of LLR
in Eq. (7). For the loss function, we consider the binary cross-entropy,
just the same as the IQ demodulation.

The input vector to the RNN is the posterior of coded bits with the
size (21, + lgaas 2)- The Iy, is the length of the bit sequence to be
decoded (the gray segments in Fig. 5), and it is padded by the heading
and tailing /,,,, auxiliary bits (the white segments in Fig. 5). The output
is of size (21,,x + lgata> Ihidden)> Which partially serves as the input to the
following DNN layer (i.e., dense layer). The input vector to the DNN

P@E=1X)= (8)
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is of size (I4yas Inigqen) and the output are the source bit estimates with
the size of (/4,,, 1). It is worth noting that the DNN is applied to each
time-step, which is the first axis of the RNN output. The reason to add
padded auxiliary bits is that the source bit b[m] is correlated with coded
bits ¢[2 m — k : 2 m + k] (in case of 1 coding rate and k is an integer
related to the constraint length of convolutional codes). In this paper,
Luuxs> ldatar and lyiqqen are given in Table 1.

aux?

3. Experimental results

In this section, we describe our data collection platform, provide
details on our experimental settings, and demonstrate the performance
evaluation results for each proposed module separately. We then intro-
duce a combined-module training procedure and report its correspond-
ing performance results.

3.1. Data simulation and data collection

We trained and tested our NN modules on two sets of data: simu-
lated and real (over-the-air). We generated the simulated data using the
implementation of an OFDM-based wireless LAN based on IEEE 802.11
standards by WLAN Toolbox™ in MATLAB. In addition, we collected
real data using Arena [17], a software-defined radio (SDR) testbed that
covers an indoor office area of 2240 sqft within the Interdisciplinary
Science and Engineering Complex (ISEC) located in the Northeastern
University’s main campus. We collected more than 16k packets via
an OFDM transceiver system with a bandwidth of 10 MHz and a
modulation scheme of 16-QAM. Specifically, we apply the GNU Radio
IEEE 802.11 a/g transceiver [20] that operates on the Arena testbeds.
The SDR framework works similarly to the MATLAB framework. It is
worthwhile to note that the data collected in the Arena testbed includes
real RF transceivers which transmit/receive baseband waveforms over
the wireless channel. The collected over-the-air dataset is processed by
the MATLAB functions to obtain intermediate-level data. We use the
same processing pipeline to compute the baseline performance for both
simulated and over-the-air data.

3.2. Channel estimation & equalization

We analyzed the channel estimation and equalization modules in-
dependently and then jointly as presented in Fig. 6. For training the
channel estimation neural network, we simulated 10k OFDM packets
using MATLAB WLAN toolbox. The simulator at this step, comprises
a multi-path fading channel with no additive white Gaussian noise
(AWGN) so that the LS estimator of the channel yields the exact
estimation for the regressand in the model. The received OFDM symbols
of the legacy long training field (L-LTF) preamble extracted from these
packets together with the exact estimation of the channel (i.e., LS
estimation under no noise) constitute our training data. To account
for a noisy channel, noise at various power levels with SNRs from
0 to 30 dB is added to the received OFDM symbols. The bit error
rate (BER) and MSE performances of the model were tested on 500
packets for each SNR level from 4 dB to 30 dB (see Fig. 6). For channel
equalization, the model was trained with the received OFDM payloads
from 1k packets of SNR = 4 dB, and tested with 5k wifi packets for
each SNR level from 4 dB to 30 dB.

Figs. 6(a) and 6(b) summarize the results in terms of IQ symbol
MSE and BER for different experiments. Specifically, we compare four
scenarios: (i) Baseline (dashed black line), i.e., LS channel estimation
and equalization; (ii) LS channel estimation followed by an NN-based
equalization (green line with dot marker); (iii) an NN-based channel
estimation followed by traditional LS equalization (blue line with as-
terisk marker); and (iv) NN-based strategy for both channel estimation
and equalization (red dashed line with diamond marker). By analyzing
the MSE results depicted in Fig. 6(a) one can note that the main
performance gain was obtained when using the NN-based channel
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Fig. 6. Comparison of MSE and BER for proposed NN model substituting channel estimation and equalization blocks in classical OFDM receiver pipeline.

estimation strategy, which led to significant improvements, while the
influence of the NN-based channel equalization is negligible. A similar
behavior is also observed in Fig. 6(b) in terms of BER results. It is
important, however, to note that: (i) these results are expected since
no non-ideal effects were considered in these experiments and (ii) the
proposed NN-based methodologies were able to at least reproduce the
results of the traditional methodologies.

3.3. IQ symbol demodulation

We generated 16k packets per SNR level for the range of 2 dB
to 30 dB with steps of 2 dB and saved inputs of the mapper at the
transmit side, i.e., IQ symbols in the frequency domain, as the labels
and equalized symbols after demapper at the receiver side as the
input features for the neural network. We used 90% of this dataset
for training and kept the remaining 10% for validation. Similarly, we
collected 16k packets per SNR for testing the model. To account for
the inevitable conversion of IQ symbols to bits at the next stage, the
output of the neural network is a vector of four elements for 16QAM
modulation whose elements determine the probability of each bit to
be ‘1’. Given this probability at the output of the neural network, we
can calculate four LLR values for each equalized symbol that are fed to
the following module through Eq. (7). These LLR values are later used
in MATLAB for calculating BER with the neural network module as its
demapper.

Fig. 7 shows Bit Error rate (BER) for different SNR levels between
2 dB and 30 dB calculated using two methods. The dashed black curve
shows the BER calculated using MATLAB WLAN toolbox. The green
curve with ‘o’ marker shows BER where LLRs are calculated using a
neural network trained on all the SNR levels and tested on all SNR
levels. The green curve with dot marker shows BER where LLRs are
calculated using a neural network that has been trained with data only
from SNR=2 dB and tested on all SNR levels. The results show up to
36% improvement (decrease in BER) in the neural network method
(green curve with dot) compared to the traditional MATLAB method
(dashed black curve). It is worth noting that low SNR data provides
more challenging instances for the NN model to train over, hence the
significant improvement is achieved in comparison with the NN model
that partially trained with higher SNR data. We also searched the design
space for the optimized model by changing the number of layers and
neurons in each layer. According to Fig. 8, the smallest model without
compromising the performance has two layers with twenty neurons in
the first layer.

10
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N —— Simulated (2dB SNR)
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Fig. 7. BER versus SNR calculated using IEEE 802.11 WLAN standard pipeline in
MATLAB and our deep learning-based receiver.
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Fig. 8. Model size optimization.
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Fig. 9. BER versus SNR calculated using various RNN decoder models, trained on the
simulated and real (over-the-air) data separately, and tested on the MATLAB data.

3.4. Forward error correction decoding

To train the RNN decoder, we generated 20k simulated WiFi packets
with SNR=2 dB. We also collected nearly 16k the over-the-air data
packet from the Arena platform. The input sequences to the RNN
decoder are the posterior of coded bits {P(&;, = 1|X))....,P(éy =
1|1X5)}, and the corresponding outputs are the estimates of source
bits {b,,b,,...,b;}. Since the decoder is a sequential data processing
module, we split our long packets into shorter sequences and then feed
shorter sequences to RNN model. We first reshaped the length L packets
into [%,2] tensor and then the tensor are split into [2 * 35 + 20,2]
tensors. The shorter tensors are finally fed to the RNN model. Fig. 9
shows BER for different SNR levels between 4 dB and 30 dB calculated
using the RNN model trained on the simulated and over-the-air data
separately and tested on the simulated data. We observe that the model
trained on the simulated data achieves better performance because the
simulated data contains a wider range of SNR levels and hence provides
more complex samples for training.

3.5. Combined NN-based receiver pipeline

As the final step, we combined all the pre-trained modules to train
an end-to-end unified framework for automated wide-band receiver. To
this end, we implemented all the required intermediate functions such
as interleaver and noise power estimator to build a stand-alone receiver
that automatically decodes received WiFi packets. We then collect
simulated and emulated real data to carry out two sets of fine-tuning
on the unified structure comprising all the pre-trained NN models.
For fine-tuning with simulated data, we collected 12k simulated data
packets per SNR level for training and additional 8k simulated packets
for testing the model. Similarly, for fine-tuning with emulated real
data, we collected 4k real data packets per SNR level for training and
additional 4k packets for testing. The real data was collected from the
Colosseum, which is a powerful wireless network emulator located in
the Northeastern Burlington campus [18]. To have the advantage of
training the model with packets from a challenging real-world scenario,
we collected the real data in a non-line-of-sight (NLOS) fashion.

The fine-tuning results with simulated and emulated real data are
illustrated in Fig. 10. As before, the dashed black curves represent
the baselines. The blue curves with larger ‘o’ markers represent the
performance of the entire pipeline initialized with the pre-trained
modules. In other words, we pass the received IQ symbols through
each of the pre-trained NN models and calculate the BER to obtain the
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mentioned curve. The blue curves with larger square marker show the
performance of the model after additional training using simulated data
(Fig. 10(a)) and emulated real data (Fig. 10(b)). We also visualized the
performance of the combined NN model initialized with all the pre-
trained modules but the RNN decoder, denoted by the red curves with
small ‘0’ markers. Similarly, the performance of the fine-tuned model
containing all the pre-trained modules but the RNN decoder is shown
by the red curves with small square markers. For these cases, in which
we replaced the RNN decoder with the standard Viterbi algorithm, we
observed that the Viterbi decoder combined with the rest of the NN
modules also provides a competitive performance. The curves labeled
as initial represent the BER for the combined model before fine-tuning,
and the curves labeled as trained shows the performance of the model
after fine-tuning with simulated or real data. Interestingly, we observed
that the bit error rate of the model before fine-tuning is higher than the
corresponding baseline for the real data (Fig. 10(b)). This is because
the new Colosseum data collected in an NLOS environment is more
challenging, and it has not been seen by the model. However, after fine-
tuning by the mentioned real data, we see a considerable improvement
in terms of bit error rate over the baseline. We also see that the end-
to-end NN-based model achieves a better performance compared with
its counterpart where RNN is replaced with the Viterbi decoder.

4. Compression for FPGA implementation

Our final goal is to prepare our architectures for an optimized FPGA
implementation. FPGA is not a flexible platform for online adaptation
in comparison with mobile CPUs and GPUs which are supported by
compiler-level optimization. Therefore, in order to make our modules,
which are composed of various architecture (i.e. RNN and MLP), com-
patible for implementation over FPGA platform, we need to perform
pruning and quantization, and co-optimize the joint scheme with FPGA
architecture and compilation. We use our proposed framework that
consist of two main steps: pruning and quantization. The former re-
duces the number of weights to be stored, and the latter saves up
memory space required to store each weight. In designing of our frame-
work, we have exploited the unique characteristics of FPGA platforms:
(i) the capability to support various quantization schemes, including
fixed point [21] and power-of-two (Po2) [22] number systems, and
(ii) the flexibility in accommodating computations using multiple on-
chip computing resources such as DSPs and look-up tables (LUTSs). This
framework as a whole obtains high parallelism and efficiency level and
preserves the accuracy performance of the original NN models.

4.1. BCR pruning scheme

There are a couple of well-established approaches to compress and
accelerate deep neural networks in the literature: structured prun-
ing [23-25] and irregular pruning [26]. In structured pruning, the
entire filter or channel is removed. Therefore, while it is intuitive that
it advantages the hardware acceleration, it decreases the accuracy. In
irregular pruning, weights with small magnitudes at arbitrary locations
are removed, which preserves accuracy but generally cannot attain
acceleration on most hardware platforms. For the purpose of optimizing
our multi-architecture decoder network, we use our proposed Block-
based Column-Row (BCR) pruning that can serve as the universal,
fine-grained structured pruning scheme. BCR pruning is a general
framework applicable to both convolutional layers with different ker-
nel sizes and fully connected layers, which are popular in the RNN
and Transformer models. As shown in Fig. 11, the weight matrix is
divided into a number of blocks, and then independent row and column
pruning are applied to each block. Finally, the ADMM-based pruning
framework [27] is employed as the BCR pruning algorithm, which can
determine the row/column pruning ratio for each block automatically.
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Fig. 10. Combined NN model fine-tuned on (a) the simulated data and (b) the emulated real data. The curves that are labeled with (initial) represent the BER for the combined
model before fine-tuning, and the curves that are labeled with (trained) shows the performance of the model after fine-tuning with simulated or emulated real data.
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Fig. 11. The proposed Block-based Column-Row (BCR) pruning scheme. Weight matrix is divided into blocks in fixed size, then we apply column and row pruning to each

individual block.
4.2. Mixed scheme quantization (MSQ)

Weight quantization is a necessary step for optimized implementa-
tion of NN modules on a hardware platform. A naive approach, called
fixed-point quantization scheme, can be used to prepare the NN module
for implementation on a fixed-point hardware, namely FPGA. A more
efficient approach is power-of-two (Po2) [22] in which multiplication
arithmetic is replaced by bit-shifting that can be realized through con-
figurable resources, e.g., LUTs. Both approaches have advantages that
we exploit jointly in our hardware-friendly quantization scheme, mixed
scheme quantization (MSQ). To apply quantization on different rows of
the weight matrix, MSQ choose between the two mentioned schemes in
the following manner. Since Po2 scheme has higher resolution around
the center, it is applied to the rows with lower variance. In contrast, the
fixed-point quantization is applied to the rows whose weights are uni-
formly distributed, i.e., that have higher variance. Furthermore, MSQ
facilitates a heterogeneous utilization of FPGA hardware resources by
executing different rows in parallel on the corresponding computation

module. By representing different weight distributions, MSQ maintains
or even achieves higher accuracy performance compared to each of its
building components.

4.3. Experimental results

We apply our BCR pruning approach followed by MSQ 8-bit quanti-
zation to all of the NN modules, trained on Nvidia RTX 2080Ti GPUs, to
verify their effectiveness using different pruning rates. The pruning rate
refers to the sparsity of the pruned model with respect to the original
one. The compression rate for quantization can be simply derived by
the final bit-width. For instance, a 4-bit quantized model is compressed
eight times (i.e., 8x) compared to a 32-bit floating point model.

4.3.1. Individual pre-trained model compression

The demodulation model (NN-based demapper) consists of two fully
connected layers, which is a very compact architecture. We performed
3-bit and 4-bit quantization to achieve 10.7x and 8x overall compres-
sion rate (see Fig. 12). The 4-bit quantization preserves accuracy well,
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Fig. 13. BCR pruning results on the decoding NN-based model.
Table 2

Compression techniques, overall compression rate and FPGA speedup of our neural
networks.

Demodulation Decoding
Model type Dense RNN+Dense
Linear (2, 20) GRU (2, 256, 3)
Architecture Linear (20, 4) t::: gé’z,l)ls)
MACs 1.2x10? 5.5% 100
Pruning Rate 1.0x 2.0x
Weight bit-width 4 8
Overall size compression 8% 8x
Baseline latency (ps) 2.02 204.12
Compressed latency (us) 1.15 93.56

while the 3-bit quantization results in a slight degradation. For our
NN-based bit decoder model, which consists of both RNN and fully
connected layers, we apply the proposed BCR pruning to compress the
decoding model by 2x, which results in a comparable (in low SNR
levels) or even better (in high SNR levels) bit error rates (see Fig. 13).

Finally, as shown in Table 2, for both of the demodulation and
decoding modules, we observe that the proposed pruning and quanti-
zation approach accelerates inference with negligible accuracy loss by
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Fig. 14. BCR pruning results on the end-to-end fine-tuned model.

Table 3
Compression latency for the end-to-end fine-tuned model.
Channel estimation Demapper RNN
Frequency (MHz) 100 100 100
Latency Baseline 6.84 ms 8.19 ps 210.04 ps
Latency Compressed 1.22 ms 1.49 ps 38.19 ps

decreasing the latency from 2.02 ps to 1.15 ps, and from 204.12 ps to
93.56 ps, respectively.

4.3.2. Combined fine-tuned model compression

We also applied our compression techniques on the end-to-end fine-
tuned model and demonstrated their compression results. We used an
8-bit quantization equivalent to 4x compression with multiple prun-
ing ratios. We achieved lossless performance at about 50% computa-
tional complexity, i.e., 8x compression in total with quantization (see
Fig. 14). We also verified the inference latency based on Vivado HLS on
the USRP X310 platforms which shows a significant acceleration (see
Table 3).

5. Conclusion

We proposed a modular and parameter-efficient physical layer re-
ceiver for an OFDM-based wireless system by extending classical signal
processing techniques for wireless communications to a more modern
approach by leveraging deep neural network models. Our detailed mod-
ular design includes various NN architectures suited for each wireless
module. Furthermore, in our designing, we took into account the proper
domain knowledge to avoid designing a mere black-box model, and
to prevent over-parameterized models. We trained our model using a
variety of simulated and real data. Our results demonstrate that the
proposed framework outperforms the classical system in terms of bit
error rate over a large range of SNR levels.
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