
1

Securing O-RAN Open Interfaces
Joshua Groen, Salvatore D’Oro, Utku Demir, Leonardo Bonati, Davide Villa,

Michele Polese, Tommaso Melodia, Kaushik Chowdhury

✦

Abstract—The next generation of cellular networks will be character-
ized by openness, intelligence, virtualization, and distributed computing.
The Open Radio Access Network (Open RAN) framework represents
a significant leap toward realizing these ideals, with prototype deploy-
ments taking place in both academic and industrial domains. While
it holds the potential to disrupt the established vendor lock-ins, Open
RAN’s disaggregated nature raises critical security concerns. Safe-
guarding data and securing interfaces must be integral to Open RAN’s
design, demanding meticulous analysis of cost/benefit tradeoffs.

In this paper, we embark on the first comprehensive investigation
into the impact of encryption on two pivotal Open RAN interfaces: the
E2 interface, connecting the base station with a near-real-time RAN
Intelligent Controller, and the Open Fronthaul, connecting the Radio
Unit to the Distributed Unit. Our study leverages a full-stack O-RAN
ALLIANCE compliant implementation within the Colosseum network
emulator and a production-ready Open RAN and 5G-compliant private
cellular network. This research contributes quantitative insights into
the latency introduced and throughput reduction stemming from using
various encryption protocols. Furthermore, we present four fundamental
principles for constructing security by design within Open RAN systems,
offering a roadmap for navigating the intricate landscape of Open RAN
security.

Index Terms—Security, 5G, O-RAN, Emulation, Encryption.

This paper has been accepted for publication on IEEE Transactions on Mobile Computing, DOI 10.1109 / TMC.2024.3393430.
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

1 INTRODUCTION

The Open Radio Access Network (Open RAN) paradigm
and its embodiment in the O-RAN ALLIANCE specifica-
tions [1] aim to transform the 5G (and beyond) ecosystem
via open, intelligent, virtualized, and fully inter-operable
RANs. The O-RAN architecture separates itself from legacy
blackbox and monolithic RAN architectures by adopting
a more flexible approach where base stations, e.g., Next
Generation Node Bases (gNBs), are converted into disag-
gregated and virtualized components that are connected
through open and standardized interfaces [2]. For example,
Fig. 1 shows the Open Fronthaul connecting the RU and DU
and the E2 interface connecting the DU and CU to the near-
RT RIC. This paradigm shift is a potential enabler of data-
driven optimization, closed-loop control, and automation
[3], thus making it possible to break the stagnant vendor
lock-in of closed networking architectures used in 4G legacy

The authors are with the Institute for the Wireless Internet of Things,
Northeastern University, Boston, MA, USA. E-mail: {groen.j, s.doro, u.demir,
l.bonati, villa.d, m.polese, t.melodia, k.chowdhury}@northeastern.edu.
This article is based upon work partially supported by Qualcomm, Inc. and
by the U.S. National Science Foundation under grants CNS-1925601, CNS-
2112471, CNS-2117814, and CNS-2120447.

Sec 2:
Background

• 2.1 Principles:

• 2.2 Network
Security

• 2.3 Network
DelaysO

pe
n

Fr
on

th
au

l

RU

E2

DU

CU

Near-RT
RIC

.pcap

Sec 3:
Platforms

• E2 Interface

• Open Fronthaul

• Disaggregation
• Virtualization
• RIC
• Open Interfaces

• 3.1 Environment
• 3.2 Experiments

• 3.3 Environment
• 3.4 Experiments

Sec 6:
Cost of
Security

Framework

• 6.1 Sufficient
Compute
Resources

• 6.2 Specific
Encryption
Algorithm

• 6.3 IO
Bottlenecks

• 6.4 MTU Size

Sec 4 & 5:
Results

• E2 Interface

• Open Fronthaul

• 4.1 SACK
Latency

• 4.2 Packet Size
Latency

• 4.3 Throughput

• 5.1 Packet Size
Latency

• 5.2 Throughput
& Latency

• 5.3 MTU Size

Fig. 1: Overview of the study, focusing on securing the O-
RAN architecture’s open interfaces.

systems. The introduction of open interfaces to interconnect
disaggregated RAN components paves the way to intelli-
gent, flexible, and scalable cellular architectures. However,
this effectively opens up the network and allow access to
its elements via software, extending the threat surface and
exposing the network to a variety of vulnerabilities and
attacks [4, 5].

In fact, one of the major threats to O-RAN open in-
terfaces arises from improper or missing ciphering of the
data sent across them [5, 6]. O-RAN interfaces transport
potentially sensitive user data and network telemetry and
control, which need protection against data tampering and
eavesdropping. Similarly, the introduction of Radio Access
Network (RAN) Intelligent Controllers (RICs)—software en-
tities hosting Artificial Intelligence (AI) algorithms executed
through applications known as xApps and rApps—renders
the network susceptible to various adversarial attacks.
These attacks aim to manipulate the AI towards inefficient
control policies or decisions that could potentially degrade
network performance [7] and allocate RAN resources un-
fairly [8]. Additionally, adversaries might attempt to bypass
authentication procedures, thereby authorizing the execu-
tion of malicious software applications [9, 10].

Security is a crucial aspect of any system as it influ-
ences its adoption and utilization. The success of O-RAN
will inevitably rely upon its security framework, proce-
dures, and defense mechanisms. For this reason, the O-
RAN ALLIANCE, industry, government organizations, and
academia alike have put significant effort in laying out

2

best practices and identifying threats and their countermea-
sures [4–6, 11–13]. For example, O-RAN WG11: Security Work
Group has developed an extensive threat analysis for O-
RAN systems and recommendations to secure them. More
specifically, O-RAN WG3: The Near-Real-Time RIC and E2
Interface Work Group is working on identifying threats and
guidance to secure the E2 open interface with confidential-
ity, integrity, replay protection, and data origin authentica-
tion mechanisms [12]. In contrast, at the time of writing,
the widely adopted Open Fronthaul interface O-RAN stan-
dards call for no encryption mechanism because of the high
bandwidth and strict latency requirements. Nonetheless,
there are works in the literature that suggest using Media
Access Control Security (MACsec) for this interface [8, 14].
MACsec can be used to prevent a host of threats to this
interface, including: inserting traffic, network intrusion, and
man-in-the-middle attacks. However, prior work does not
consider an actual implementation of MACsec for the Open
Fronthaul nor analyze its overhead cost.
Motivation. Although the examples above demonstrate
traction and desire to make O-RAN secure by addressing
a variety of threats, to the best of our knowledge there has
been no systematic study to identify and measure the cost
that security has on O-RAN open interfaces. It is vital that
an informed and risk-based approach is taken to adequately
address security concerns in O-RAN, while recognizing that
any method for enhancing security, such as adding encryp-
tion, comes at a performance cost [11]. Our goal in this paper
is to (i) understand if such a cost is tolerable (motivating
a rapid adoption of security protocols that can be used
without impacting performance and normal operations of
the network); and (ii) identify which elements contribute
the most to such costs informing system architects on how
to design security systems for O-RAN that are practical and
sustainable.

To derive practical insights, it is essential for security
studies to rely on empirical data obtained from the ex-
ecution of security algorithms on O-RAN hardware and
software components. This approach enables accurate mea-
surement of how security mechanisms impact resource uti-
lization, processing latency, and data rates. For this reason,
we leverage the broad and public availability of O-RAN
testbeds [15–19] to thoroughly test and analyze the effects of
encryption on a variety of O-RAN interfaces. We distinguish
between two primary categories of interfaces within our
study, offering specific examples of each to provide a clear
framework for our analysis. This approach allows us to
delve into the unique characteristics and requirements of
each interface type, aiding in a more precise evaluation of
the impact of security measures.
1) RIC Data Interfaces: This category comprises interfaces
that the RICs utilize for both receiving and transmitting
data. The O-RAN architecture features two RICs, executing
control loops with a near-real-time scale (10 ms to 1 s) and
a non-real-time scale (beyond 1 s). Notable examples of
interfaces for the RICs include E2, O1, and A1. For our anal-
ysis, we specifically focus on the impact of adding Internet
Protocol security (IPsec) to the E2 interface by extending our
prior works and findings in [7, 20], as it plays a pivotal role
in facilitating the exchange of packets between the near-RT
RIC and the Central Units (CUs)/Distributed Units (DUs).

2) Interfaces Enabling gNB Disaggregation: The second
category encompasses interfaces that are essential for sup-
porting the disaggregation of gNBs. One of the key inter-
faces within this category is the Open Fronthaul interface for
the 7.2 split of the 3GPP stack. This interface—defined by the
O-RAN ALLIANCE—serves as a critical link between the
Radio Unit (RU) and the DU, managing the transmission of
time-sensitive data in substantial volumes, such as In-phase
and Quadrature (IQ) samples. For this class, we examine the
cost of securing the Open Fronthaul interface with MACsec.

The main contributions of our work are as follows:

• We conduct the first-ever experimental analysis of adding
O-RAN-compliant encryption to the O-RAN E2 and Open
Fronthaul interfaces using Colosseum and a private 5G O-
RAN-compliant testbed. Specifically, we extend our previ-
ous study [20] that analyzes the impact of adding security
to the E2 interface with IPsec and report, for the first time,
an experimental analysis of the effects of adding security
with MACsec to the O-RAN Open Fronthaul interface.
• We showcase the validity of our results through live
experimentation that sheds light into the performance of O-
RAN interfaces when the proposed security measures are
deployed. Additionally, we validate at-scale a theoretical
framework for calculating the total network delay when
adding security protocols to distributed functional units. We
extend these results by developing a general framework for
understanding the cost of encryption in O-RAN with the
goal of enabling researchers and engineers to build secure-
by-design O-RAN systems.
• We develop two separate O-RAN emulation environ-
ments and will publicly release the set of tools and datasets
used to analyze the impact of adding security to Open
Interfaces upon acceptance of this paper.
• We derive insights and identify four key principles that
system designers should be aware of to build future O-
RAN systems that are secure by design. These principles are:
sufficient compute resources must be provisioned, specific
protocol implementations and encryption algorithms matter
greatly, user space and kernel space I/O bottlenecks must be
addressed, and the network Maximum Transmission Unit
(MTU) size should be optimized.

The rest of the paper’s organization is shown in Fig. 1.
Section 2 gives a brief overview of key O-RAN principles.
Section 3 describes our emulation environments. Our exper-
imental procedures and results are detailed in Section 4 for
the E2 interface and in Section 5 for the Open Fronthaul
interface. We provide additional analysis of our results in
Section 6 and conclude the paper in Section 7.

2 BACKGROUND

The goal of this section is to provide background that
will be useful later, when we delve into the details of the
security assessment study. We first provide a brief overview
of O-RAN shown in Fig. 2, and its foundational principles
(Sec. 2.1), and then introduce network security protocols
that will be used in this work (Sec. 2.2). Finally, we give an
overview of the types of delay in packet switched networks
(Sec. 2.3).

3

R
ad

io
 A

cc
es

s
N

et
w

or
k

DU

Near-RT RIC

RU

CU-CP CU-UPE1

F1-c F1-u

Fronthaul7.2 split Open

E2

xApp 1 xApp N

Service Management and Orchestration
rAppNon-RT RIC

UE
UE

UE

A1

O1

Fig. 2: Overall O-RAN architecture showing the 7.2x split
with disaggregated DU, RU, and CU. The Near-RT and
Non-RT RICs house Machine Learning (ML) models to pro-
vide closed-loop RAN control under different time scales.

2.1 O-RAN Principles and Architecture

• Disaggregation and Virtualization: O-RAN embraces
disaggregation principles by effectively splitting base sta-
tions into multiple functional units, namely the CU, the
DU, and the RU. The CU is split further into the Control
Plane (C-plane) and the User Plane (U-plane). This logical
split is performed via virtualization and softwarization,
which allow different functions to be executed at different
locations and on different platforms across the network.
These functional units, shown in Fig. 2, can be abstracted
from the physical infrastructure and deployed as software
components (e.g., microservices, containers). This architec-
ture enables a decoupling between hardware and software
components, sharing of hardware among different tenants,
portability and execution on general-purpose hardware, and
automated deployment of RAN functions. It is essential
to grasp how virtualization and security considerations
impact resource utilization, as this understanding is critical
for designing solutions that can accommodate the security
overhead effectively without overloading resources and in-
troducing excessive latency.
• RIC: O-RAN introduces two RICs, the non-RT RIC and
the near-RT RIC. The RICs are both designed to enable in-
telligent decision-making, network monitoring, and control
via AI and ML solutions that are fed with data transferred
across O-RAN open interfaces. The near-RT RIC receives
data over the E2 interface and handles control loops on
a time scale between 10 ms and 1 s, using plug-and-play
components called xApps. The non-RT RIC collects data via
the O1 interface and operates at time scales higher than 1
second using rApps, and is embedded in the Service Man-
agement and Orchestration (SMO) framework. Although
both RICs play a vital role in the lifecycle management
of O-RAN systems, in this paper, we focus on the near-
RT RIC only. The near-RT RIC is the most sensitive to
latency and overhead introduced by security mechanisms
due to its stringent operational time scale and its tight
coordination with controlled gNBs. Indeed, as illustrated in

Fig. 2, the near-RT RIC interfaces with the CUs and DUs of
the distributed gNBs. On the contrary, since the non-RT RIC
operates with latency timescales of 1s or greater, the cost of
securing it (in terms of overhead and latency) is incremental
and marginal.
• Open Interfaces: While decoupling hardware and soft-
ware creates an open environment for faster development, it
also introduces the need for interoperable interfaces. These
are some of the key elements necessary to overcome the
traditional RAN black-box approach as they expose network
parameters to the RICs and enable data analytics and ML-
enabled control. The O1 interface is the primary interface
with the SMO and the non-RT RIC and is responsible for
enabling operations and maintenance. Similarly, the O2 in-
terface connects the SMO to the O-Cloud, the abstraction for
the infrastructure supporting O-RAN virtualization. The A1
interface connects the two RICs and is used for deploying
policy-based guidance. The E2 interface is the key interface
that connects the near-RT RIC to the RAN (see Fig. 2).
The E2 interface enables the collection of metrics from the
RAN to the near-RT RIC and allows the RIC to control
multiple functions in the disaggregated gNB. Finally, the
Open Fronthaul connects a DU to one or multiple RUs
inside the same gNB [21]. The Open Fronthaul is further
broken down into four distinct planes: (C)ontrol, (U)ser,
(S)ynchronization, and (M)anagement plane. For example,
the U-plane carries the actual user data in the form of
IQ samples, while the S-plane carries timing and synchro-
nization messages. The requirements in terms of both traf-
fic type and security vary greatly between the planes. A
comprehensive discussion of these and additional interfaces
can be found in [1, 6, 11, 12, 21, 22]. It is imperative to
secure such interfaces as they might transport sensitive user
data and network telemetry. The O-RAN ALLIANCE WG11:
Security Work Group requires specific security functions to
be supported on each interface along with what protocol
will provide those functions [23, 24]. Additional interface
details are specified by WG4: Open Fronthaul Interfaces Work-
group [21, 25] and WG5: Open F1/W1/E1/X2/Xn Interface
Workgroup [26]. Table 1 lists each interface, security function,
and protocol as specified by the O-RAN ALLIANCE.

Interface Function Protocol Overhead
C I A R (Bytes)

A1, O2 ✓ ✓ ✓ ✓ TLS ≥ 25
O1 ✓ ✓ ✓ TLS ≥ 25

F1- C ✓ ✓ ✓ TLS ≥ 25
E2 ✓ ✓ ✓ ✓ IPsec ≥ 57

F1, W1, E1, X2, Xn ✓ ✓ ✓ IPsec ≥ 57
Fronthaul- M ✓ ✓ ✓ SSHv2 or TLS ≥ 28 or ≥ 25

Fronthaul- C,U,S ✓ 802.1x N/A

TABLE 1: O-RAN Interface security functions (C: Confiden-
tiality; I: Integrity: A: Authentication; R: Replay protection)
and protocols specified by O-RAN ALLIANCE WGs 4, 5 &
11.

2.2 Network Security Protocols
There are many useful models to describe the set of network
security services. Here we focus on the four functions used
by O-RAN ALLIANCE WG 11: Confidentiality, Integrity, Au-
thentication, and Replay Protection. Confidentiality ensures

4

the payload of the message cannot be read while the data is
in transit. Integrity guarantees the content of the message
is not changed in transit. Authentication, in this context,
guarantees the endpoints of a conversation are who they say
they are. Finally, Replay Protection ensures a pre-recorded
message cannot be sent as a new message in the future.

There are a wide range of protocols used to provide these
network security functions at various layers of the network
protocol stack. In this paper, we consider: Transport Layer
Security (TLS), which operates at the transport layer, IPsec,
which operates at the network layer, and MACsec, which
operates at the data link layer. While each protocol can
provide similar general security functions, there are also
distinctions among them.

TLS [27] is a widely used transport layer security pro-
tocol that provides authentication during the initial hand-
shake process, and offers confidentiality by using a suite of
algorithms to encrypt the transport layer payload. TLS also
provides integrity and replay protection through the use of
a message authentication code to prevent replay attacks.
Newer releases of TLS (e.g., TLS 1.3) have faster Security
Association (SA) establishment when compared to previous
versions of TLS and IPsec. After the initial SA is established,
TLS adds about 25-40 Bytes of overhead to each packet.

IPsec works at the network layer and offers several
modes of operation. The primary security modes are Au-
thentication Header (AH) [28], which provides integrity,
authentication, and replay attack protection; and Encap-
sulating Security Payload (ESP) [29], which additionally
provides encryption. In practice, ESP is almost exclusively
used and the O-RAN ALLIANCE has mandated its use.
IPsec can also operate in either transport or tunnel mode.
Tunnel mode creates a new Internet Protocol (IP) header for
each packet and protects the integrity of both the data and
the original IP header [30]. On the contrary, transport mode
only secures the network layer payload. O-RAN specifica-
tions mandate the support of tunnel mode, while support
for transport mode is optional. Even though IPsec uses
a slightly different handshake to establish SAs compared
to TLS, it still offers all the same security functions and
utilizes the same cryptographic functions as TLS after the
SA is established. When using ESP and tunnel mode, IPsec
adds at least 57 Bytes of overhead to each packet. However,
in practice this is often higher because the cryptographic
functions are block ciphers, requiring a fixed-size input.

MACsec [31], is used for securing point-to-point con-
nections at the data link layer. MACsec offers two modes:
encryption on or off. Both modes provide integrity, re-
play protection, and authentication, but only the encryp-
tion on mode offers confidentiality. Unlike TLS and IPsec,
the MACsec standard specifies a single cryptographic
algorithm, AES128-GCM, though implementations using
AES256-GCM are available. MACsec adds a fixed 32-byte
header to all packets. However, similar to the other encryp-
tion protocols, MACsec uses AES for confidentiality, which
is a block cipher. Therefore, when encryption is enabled the
overhead may be larger than 32 Bytes. Another security pro-
tocol that operates at the data link layer is IEEE 802.1x [32],
which provides a standard for port-based authentication on
Local Area Networks (LANs). 802.1x only provides periodic
authentication (a common default is every 60 minutes) of

devices connected over physical ports and no other security
functions.

One of the primary differences between all these proto-
cols is the way in which SAs are established. However, this
happens infrequently; for TLS and IPsec by default the SAs
expire after 8 hours, and for MACsec the SA expires after
1 hour. While this re-authentication time is configurable,
the default values used in the majority of applications, on
the order of a few hours, are considered secure. It should
be noted that very frequent (on the order of seconds) re-
authentication greatly reduces throughput. Additionally, all
three protocols allow re-authentication before the current
SA expires, guaranteeing continuous operation. Because this
establishment happens very infrequently, it has a negligible
impact on overhead and resource utilization. For this reason,
we do not deeply analyze the initial handshake or SA
establishment in this article. On the other hand, there are
numerous differences in the encryption algorithms used and
security services provided which, as we will show, have a
significant impact on performance and resource utilization.

2.3 The Latency Cost of Security
To properly evaluate how security impacts network perfor-
mance, it is important first to understand how the different
security mechanisms affect the way data flows through the
network. Specifically, since security adds overhead (both in
terms of data and procedures), we need to establish a model
that captures the effect that security has on total delay. In
packet-switched networks, there are four primary sources
of delay at each node along the path: queuing delay (Dque),
propagation delay (Dprop), transmission delay (Dtrans), and
nodal processing delay (Dproc) [33]. The total delay can be
expressed as

Dtotal = Dque +Dprop +Dtrans +Dproc. (1)

• Queuing Delay: This delay considers the duration that
packets spend in the processing queue at each interface
along the end-to-end path. In our test environment, there
is almost no competing traffic, allowing us to safely assume
Dque = 0. In more complex networks, this assumption may
not hold.

To analyze queuing delay further, we model the network
nodes using an M/M/1 queue with packet arrivals forming
a Poisson process. Then the average queuing delay is given
by Dque =

1
µ−λ − 1

µ where λ is the traffic arrival rate and µ
is the queue service rate. The difference between unsecured
or Plain Text (PT) and secured or Cipher Text (CT) delays
depends on the overhead added by encryption, denoted
as ϵ. The value of ϵ is protocol-specific, but typically falls
within the range of 60 Bytes (480 bits) or less. The difference
in queuing delay is given by ∆Dque =

1
µ−(λ+ϵ)−

1
µ−λ . When

µ − λ ≫ ϵ, the approximation ∆Dque ≈ 0 is valid. Even in
significantly more congested networks, the queuing delay
remains largely unaffected by the presence or absence of
encryption. To illustrate, in our network supporting µ = 10
Gbps speeds, this approximation holds (i.e., ∆Dque ≤ 1 µs)
when the arrival rate λ ≤ 9.78 Gbps.
• Propagation Delay: The propagation delay is strictly a
function of the physical length and propagation speed of
the link. The propagation speed depends on the link type

5

but is typically on the order of 2 × 108 m/s [33]. For our
environment, we assume a length of 100m giving Dprop =
0.05 µs. This will change for other systems but will remain
constant regardless of encryption.
• Transmission Delay: The transmission delay is a function
of the packet size (in bits), L, and the link transmission
rate, R, which is defined as Dtrans = L/R. For any given
system, R is fixed but L will increase with encryption.
Table 2 lists the calculated transmission delays, with and
without encryption, based on the average packet length of
the three types of packets we observe and describe in detail
in Sec. 3.1.1.

Packet Type Plain Text Cypher Text
SACK 62 B : 0.0496µs 138 B : 0.1104µs
Short E2AP 195 B : 0.1560µs 255 B : 0.2040µs
Long E2AP 1425 B : 1.140µs 1485 B : 1.188µs

TABLE 2: Calculated transmission delay for 3 types of
packets with and without encryption.

• Processing Delay: Typically, this is defined as the time
required for intermediate nodes to inspect the packet header
and determine the appropriate path for the packet, whether
at layer 2 for switching or layer 3 for routing. This time
can also encompass other factors, such as bit-level error-
checking [33]. It’s important to note that while the fronthaul
network is expected to function as a pure layer-2 network
(i.e., no routing involved), the E2 interface can be deployed
over a layer-3 network, necessitating routing at certain in-
termediate nodes.

In our analysis, we include the encryption delay within
the processing delay, as the cryptographic functions are
integral to passing the payload to lower or higher layers
in the network stack. Notably, this encryption delay occurs
only at the sending and receiving nodes. Intermediate nodes
do not need to engage in cryptographic operations because
the Ethernet and IP headers are sent in PT.

3 O-RAN SECURITY EVALUATION PLATFORMS

In this section, we describe the interface security evaluation
platforms we used in this work. Specifically, the E2 interface
implementation is illustrated in Sec. 3.1, and the Open
Fronthaul interface implementation is described in Sec. 3.2.
The results obtained on both platforms will be presented in
Secs. 4 and 5.

3.1 E2 Interface
We extensively use Colosseum [15], the world’s largest
wireless network emulator with hardware in-the-loop, to
evaluate the E2 interface. Colosseum supports experimental
research through virtualized protocol stacks, enabling users
to test full-protocol solutions at scale, with real hardware de-
vices, in realistic emulated RF environments with complex
channel interactions. The key building blocks for deploying
full protocol stacks are 128 Standard Radio Nodes (SRNs).
Each SRN consists of a 48-core Intel Xeon E5-2650 CPU with
an NVIDIA Tesla k40m GPU connected to a USRP X310
Software-defined Radio (SDR). Users can instantiate custom
protocol stacks by deploying Linux Containers (LXCs) on
the bare-metal SRNs.

We utilize the srsRAN-based SCOPE [17] framework to
implement a softwarized RAN for both the gNB and mul-
tiple User Equipments (UEs). SCOPE extends srsLTE (now
srsRAN) version 20.04 by adding an E2 interface, several
open APIs to facilitate run-time reconfiguration of the gNB,
and additional data collection tools. We utilize the ColO-
RAN [18] framework for the near-RT RIC implementation.
ColO-RAN offers a minimal version of the O-RAN Software
Community (OSC) near-RT RIC (Bronze release) tailored to
execute on Colosseum via an LXC-packaged set of Docker
containers. In particular, it provides an E2 interface imple-
mentation compliant with O-RAN specifications that can be
used to interface with the RAN nodes for data collection and
control. ColO-RAN also offers an extensible xApp template
that collects basic Key Performance Metrics (KPMs) from
the gNB and can send control actions to it.

To secure the E2 interface, we add the strongSwan [34]
open source IPsec-based VPN to both the SCOPE and ColO-
RAN LXCs. The full IPsec configuration is described in para-
graph 3.1.1. We also add several simple scripts to automate
data collection on E2 interface performance which we make
open source for public use and further research.

RU

E2Near-RT
RIC

.pcap

gNB

Slice A

Slice B

Slice C

Fig. 3: O-RAN testbed used to study security in the E2
interface, consisting of three UEs, a gNB, and the near-RT
RIC. Each component is implemented in an LXC on top of
an SRN within Colosseum.

3.1.1 E2 Experimental Setup

Our experimental system (see Fig. 3) is composed of up
to twelve blocks: 10 UEs, a gNB, and the near-RT RIC.
Each block is implemented through LXC on separate SRNs.
The UEs are connected to the gNB over an emulated
RF channel where each UE is assigned to one of three
unique slices representing the three main use cases for 5G:
enhanced Mobile Brodband (eMMB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC) [35]. Each slice has its own
traffic pattern generated from real world 5G traffic traces
as described in [36]. First, we use a variety of applications
to generate traffic for each network slice. For eMBB, we
stream videos, browse the Internet, and transfer large files.
For URLLC, we conduct both voice phone calls, video chat,
and utilize real time AR applications. For mMTC we capture
texts and background traffic from all apps when the phone
is not actively being used. This is not the typical example
of mMTC traffic, such as IoT applications. However, it does
fit nicely in the fundamental definition of mMTC because
it is low throughput, latency tolerant communication from
numerous applications. Next, we built a traffic generator
tool to replay the traffic between the UE and gNB. The traffic
generator emulates the original traffic by reading the length
field for each packet and sending a random byte string of

6

Fig. 4: E2 traffic displays a common pattern of one small
E2AP packet then one large E2AP packet followed by a
SACK as seen in this flow graph.

the appropriate length at the time indicated by the packet
timestamp. This enables us to replicate the timing, length,
and direction of all data sent between the UE and gNB,
while completely anonymizing the actual payload within
our experimental test bed. Our O-RAN test bed further
emulates the channel conditions between the gNB and UE
based on measured channel conditions for a real deployed
cellular system. This allows us to accurately capture the O-
RAN KPIs as if the original communication were taking
place in a deployed O-RAN test bed. The gNB is connected
to the near-RT RIC over a wired 10 Gbps backbone network.
We implement the sample KPM monitoring xApp from [18]
that periodically polls the gNB for up to 31 KPMs for each
UE. This generates between 200 Kbps of traffic with 3 UEs
sending 6 KPMs up to 3.5 Mbps of traffic with 10 UEs
sending 31 KPMs on the E2 interface.

We capture all traffic traversing the E2 interface at the
gNB for over 20 minutes. The Stream Control Transmission
Protocol (SCTP) is used as the transport layer protocol for
all traffic. Fig. 4 illustrates a typical example of the captured
traffic. First, the gNB sends a small data packet followed by
a large data packet using E2 Application Protocol (E2AP)
over SCTP. Fig. 5 shows the empirical CDF of the E2AP
packet sizes with and without encryption. Finally, the near-
RT RIC responds with a fixed-size Selective Acknowledg-
ment (SACK) packet (62 Bytes). This pattern is consistent
because SCTP specifies that a SACK should be generated
for every second packet received [37]. Any additional pro-
cessing delay introduced by IPsec to the E2 interface takes
place at the kernel level, outside of the srsLTE software
stack. Even though we do not have access to the precise time
when the gNB starts processing or transmitting a packet, we
can observe the delay between the transmission of the large
E2AP packet and the reception of the SACK at the gNB. For
these reasons, we first study the effect of encryption on the
SACK.

After establishing a baseline performance without en-
cryption, we add O-RAN-compliant encryption as specified
in [12] to the E2 interface. We implement IPsec with ESP
in tunnel mode. For each packet, tunnel mode creates a
new IP header, and protects the integrity of both the data
and original IP header [30]. We use AES256 for encryption
and SHA2-256 for the authentication hash function. AES256
is a high-speed symmetric encryption algorithm that uses
a fixed block size of 128 bits and a key size of 256 bits

Fig. 5: CDF of E2AP packet length for both PT and CT traffic.

and performs 14 transformation rounds [38]. SHA2-256 uses
eight 32-bit words and performs 64 transformation rounds
to compute a 256-bit hash [39]. However, only the first 128
bits of the hash are included in the IPsec trailer. IPsec, as
configured in our test, provides all the required services
listed in the O-RAN specifications for E2 [12]. With this
configuration, IPsec adds at least 57 Bytes of overhead to
each packet. However, because both AES256 and SHA2-
256 require fixed input block sizes, padding may be added
causing the overhead to further increase. For example, en-
crypting the SACK adds 76 Bytes for a total CT SACK length
of 138 Bytes. We generate the same UE traffic described
earlier, poll the gNB for the same KPMs, and again capture
the traffic traversing the E2 interface at the gNB.

3.2 Open Fronthaul
An overview of the Open Fronthaul interface is shown in
Fig. 6. While the Open Fronthaul interface can be viewed as
a single connection (blue pipe) passing through other net-
works (white cloud), the O-RAN ALLIANCE WG4 specifies
the allowable latency’s for downlink (T12) and uplink (T34)
separately.

E2Near-RT
RIC

gNB

Slice A

Slice B

Slice C

O-DU O-RU
T12

T34

Fig. 6: The Open Fronthaul (shown in blue) connects the O-
DU and O-RU, potentially across a wider network (cloud).
The O-RAN ALLIANCE WG4 specifies transmission delays
for the downlink (T12) and the uplink (T34).

We leverage the NVIDIA Aerial Research Cloud (ARC)
platform [40] to capture traffic from a production-ready
O-RAN and 5G-compliant system based on a 3GPP 7.2
split [21]. NVIDIA ARC combines the open-source project
OpenAirInterface (OAI) [41] for the higher layers of the
protocol stack with the NVIDIA Aerial physical implemen-
tation, which runs on Graphics Processing Unit (GPU) for
inline acceleration (i.e., NVIDIA A100). The GPU in an ARC
server is combined with a programmable Network Interface
Card (NIC) (in our case, a Mellanox ConnectX-6 Dx) through
remote direct memory access (RDMA), bypassing the CPU
to transfer packets from the NIC to the GPU itself. This
makes it possible to implement a high-speed DU-side ter-
mination of the Open Fronthaul interface, capable of block
floating point compression to ensure prompt delivery of the
IQ samples and control messages to the RU.

7

Fig. 7: CDF of Open Fronthaul packet length, highlighting
the three types of packets observed: C-plane, U-plane with
PRB 0-11, and U-plane with all PRBs.

Specifically, we leverage a private 5G network deployed
at Northeastern University (part of the X-Mili project) [19],
including 8 ARC nodes with a dedicated Core Network
(CN) and fronthaul infrastructure. The fronthaul infras-
tructure features a Dell S5248F-ON switch, with a Qulsar
QG-2 acting as a grandmaster clock. The latter distributes
Precision Time Protocol (PTP) and SyncE synchronization
to the DU and the RU. In our setup, the RU is a Foxconn
4T4R unit operating in the 3.7 − 3.8 GHz band, and we
use Commercial Off-the-Shelf (COTS) 5G UEs from OnePlus
(AC Nord 2003) [42].

While the code base for the DU is open and potentially
extensible to embed MACsec, the RU comes with a closed-
source FPGA-based termination for the fronthaul interface.
This prevents us from directly enabling MACsec in our
Open Fronthaul environment. Therefore, we adopt a trace-
based approach and configure a port of the fronthaul switch
to mirror the fronthaul traffic to a server running a packet
capture. We built an emulation environment in our lab using
two desktop computers with Intel i9-13900K CPUs with
NVIDIA Mellanox ConnectX-4 Lx NICs directly connected
over a 10 Gbps Ethernet link. We leverage a Python script
to re-play the original pcap file captured on the real Open
Fronthaul. In this way, we can properly emulate the original
Open Fronthaul capture and observe the impact of adding
any encryption. The Linux kernel natively supports MAC-
sec. We use the Ubuntu commands provided in documenta-
tion [43] to configure MACsec.

3.2.1 Open Fronthaul Experimental Setup

We capture all the traffic traversing our Open Fronthaul
described in Sec. 3.2 for over 20 minutes for several dif-
ferent traffic loads. In our environment, the Open Fronthaul
uses the eCPRI protocol to send both C-plane and U-plane
messages. There are two network options to use eCPRI; the
first uses the full network stack (UDP over IP), while the
second is designed for point-to-point networks and only
uses the MAC layer. Our system is the second; our traffic
only contains an Ethernet header with the eCPRI header
and payload. While eCPRI supports payloads of up to 8192
Bytes, we consistently observe a maximum frame length of
7678 Bytes on the wire as shown in Fig. 7.

Currently, the O-RAN ALLIANCE specifications do not
call for any security on the Open Fronthaul (C, U, S) planes.
However, there are known vulnerabilities to not securing
the Open Fronthaul [9, 10]. For this reason, there is a

growing momentum for advocating to secure this vital link
using MACsec [8, 14]. MACsec can be configured with or
without encryption and we test both modes of operation. As
mentioned above, due to hardware limitations our exper-
imental environment does not support MACsec hardware
offloading in the NIC directly, so all MACsec operations are
performed in software.

4 E2 EXPERIMENTAL RESULTS

4.1 SACK Analysis

Fig. 8 shows the distribution of delay times for both PT
and CT SACKs. It is immediately clear that encryption
adds approximately 22 µs of delay on average. However,
it is essential for O-RAN researchers, engineers, and system
architects to fully understand both the cause and the impact
of any extra overhead.

Fig. 8: SACK delay distribution with and without encryp-
tion.

The SACK packet is ideal for an initial analysis because
the packet size is fixed (PT=62 B, CT=138 B) and the total de-
lay we observe in our experiments is very tightly grouped,
as seen in Fig. 8. The total average delay we observe for the
PT SACK is 61.12 µs, while the CT SACK is 82.64 µs. From
Fig. 4, we can see that the total delay for a SACK can be
expressed as DSACK

total = 2×Dprop +Dtrans +Dproc. Given
the total delay, the transmission delays in Table 2, and the
calculated propagation delay (Sec. 2.3), we can calculate the
average processing delay; for the PT SACK it is 60.97 µs
while the CT SACK is 82.64 µs. In Colosseum, encryption
on the E2 link adds approximately 22 µs of delay to small
packets. However, the near-RT RIC is designed to operate
on scales from 10 ms to 1 s. These results show that for the
E2 Interface, with low traffic load (≤ 200kbps) and small
packets (≤ 138B), encryption has no meaningful impact
on E2 interface traffic.

4.2 Packet Size Analysis

Our initial results examining the SACK over the E2 interface
(Sec. 4.1) show that the processing delay accounts for at least
99.75% of the total delay for the 62 Byte SACK, regardless
of encryption. In other words, the delay for short packets
is dominated by the processing delay. Given the calculated
propagation and transmission delays, it is likely that pro-
cessing delay dominates in equation (1) for larger packets
as well. However, since it is not possible to know the exact
start times for transmitting the long X2AP packets based
on the traces (and we do not have any SACK for the Open

8

Fig. 9: Processing delay as a function of packet size for PT
and CT traffic over the E2 Interface.

Fronthaul) we conduct another experiment to confirm this
hypothesis.

To fully quantify the effect of encryption for packets of
various lengths, we use ping (ICMP echo) of various lengths
to accurately capture the network Round Trip Time (RTT).
We start with a small payload for the ping and increment
the size regularly. For each step size, we send 100 pings with
250 ms between each ping. Because there are no competing
flows for this experiment the queuing delay is zero and the
RTT is expressed as

RTT = 2× (Dproc +Dtrans +Dprop). (2)

Given the calculated propagation and transmission de-
lays, 2 × Dprop = 0.1 µs, 2 × Dtrans ≤ 2.4 µs, and the
observed RTT ≥ 50 µs, we can approximate equation
(2) as Dproc ≈ RTT

2 . From the results shown in Fig. 9,
we observe that the processing delay increases with packet
length when sending encrypted traffic using AES256. How-
ever, the processing delay difference between CT and PT is
∆Dproc ≤ 50 µs for all tested packet sizes. In contrast, when
we use AES256-GCM we see no difference in processing
delay between the PT and CT traffic. We can conclude that,
regardless of the encryption algorithm used, for all packet
sizes from 62 B to 1500 B, encryption has minimal impact
on E2 traffic.

4.3 Throughput Analysis
We also design an experiment to quantify the effect of
encryption on the total traffic throughput, T . We use iperf3
to generate traffic at specific bit rates for 10 seconds and
regularly increment the transmission rate. We record the
actual throughput reported by the receiving node. We also
capture CPU utilization on the gNB (sending node) for each
attempted transmission rate using iperf3.

From Fig. 10 it can be seen that the maximum encryption
rate our system is capable of when using AES256-CBC as the
encryption algorithm is ≤ 575 Mbps. Fig. 10 also shows the
CPU utilization while using IPsec. While CPU utilization
does increase for both types of traffic, we can see that
encryption is very CPU-intensive. When sending PT, the
CPU utilization increases proportional to 0.00365 × T [20],
whereas Fig. 10 shows the CPU utilization for CT grows
proportional to 0.2 × T until it reaches saturation. There-
fore, we conclude that encrypting all traffic increases CPU
utilization by roughly two orders of magnitude compared to

Fig. 10: Measured throughput and CPU utilization (in blue)
as a function of attempted transmission rate for CT traffic
(IPsec) over the E2 Interface while using AES256-CBC.

PT traffic. In our system, using AES256 CPU utilization is
a limiting factor for encrypting traffic when the attempted
transmission rate is ≥ 575 Mbps.

We ran the same experiment with a wide variety of
encryption algorithms and key sizes. We observed the same
pattern where the CT throughput increases linearly until
it plateaus. The maximum throughput varies greatly based
on the encryption algorithm used, as seen in Table 3. The
specific algorithm implementation is the most significant
factor when implementing IPsec on the E2 interface with
AES-GCM vastly outperforming the other algorithm imple-
mentations. Galois/Counter Mode (GCM) simultaneously
provides confidentiality (using counter mode) and authen-
tication (using arithmetic in the Galois field GF(2n)), where
n is the key size [44]. These operations can be performed
in parallel, offering greater performance than other modes
such as CBC, which require chaining of operations.

Encryption algorithm Throughput

AES128-CBC 505 Mbps
AES256-CBC 512 Mbps
AES128-CCM 573 Mbps
AES256-CCM 573 Mbps

ChaCha20-Poly1305 989 Mbps
AES256-GCM 1370 Mbps

TABLE 3: 30 second throughput for various encryption al-
gorithms. The algorithm and implementation have a greater
impact on system performance than key size, with AES-
GCM performing the best.

One key observation is that for all implementations there
was virtually no difference in performance based on key
size (AES128 versus AES256). In addition to the difference
in key length, AES128 only uses 10 transformation rounds
while AES256 uses 14 rounds [38]. The additional rounds
for AES256 consist of the operations: SubBytes, ShiftRows,
and MixColumns which are highly optimized for perfor-
mance and do not add any significant delay. We encourage
all system designers to use the longer 256-bit key length
as it provides higher security with virtually no impact
on performance. While individual systems and encryption
algorithms may be different, these experiments show that
CPU utilization is a key trade-off.

9

Fig. 11: Processing delay as a function of packet size over
the Open Fronthaul.

5 OPEN FRONTHAUL EXPERIMENTAL RESULTS

5.1 Packet Size Analysis

We repeat the experiment described in Sec. 4.2 over the
Open Fronthaul interface and plot the processing delay
without and with MACsec in Fig. 11. It is immediately
clear that using MACsec on the Open Fronthaul interface
increases delay and has a greater impact on larger packets
than smaller packets. Using MACsec, with or without en-
cryption, increases the delay for small packets by ≈ 39 µs.
For the maximum packet size of 9000 Bytes, the processing
delay due to MACsec with no encryption increases to ≈ 153
µs. However, the cost of using encryption increases faster
than that for MACsec without encryption, reaching a total
increase of ≈ 218 µs.

O-RU O-DU Category
Cat A B C D E F G H I J K L M N

O 3000 399 379 359 339 319 299 279 259 239 219 199 179 159
P 2949 348 328 308 288 268 248 228 208 188 168 148 128 108
Q 2929 328 308 288 268 248 228 208 188 168 148 128 108 88
R 2909 308 288 268 248 228 208 188 168 148 128 108 88 68
S 2889 288 268 248 228 208 188 168 148 128 108 88 68 48
T 2869 268 248 228 208 188 168 148 128 108 88 68 48 28
U 2849 248 228 208 188 168 148 128 108 88 68 48 28 8
V 2829 228 208 188 168 148 128 108 88 68 48 28 8 0

W 2809 208 188 168 148 128 108 88 68 48 28 8 0 0
X 2789 188 168 148 128 108 88 68 48 28 8 0 0 0
Y 2769 168 148 128 108 88 68 48 28 8 0 0 0 0
Z 2749 148 128 108 88 68 48 28 8 0 0 0 0 0

TABLE 4: The O-RAN ALLIANCE WG4 specified maximum
transmission delays in µs. For our system the RU/DU com-
binations in the red region support MACsec with encryp-
tion, the grey region support MACsec without encryption,
and the blue region is supported without any MACsec.

Considering the latency requirements discussed in
Sec. 3.2 for the Open Fronthaul and the observed large frame
sizes, it is evident that, for certain systems, the use of MAC-
sec may significantly impact Open Fronthaul traffic. The
O-RAN ALLIANCE specifies the minimum and maximum
latency supported by different equipment combinations for
RU and DU, as detailed in [21] and reproduced in Table 4.
For any system, the chart will exhibit three distinct regions,
contingent on the configuration and use of MACsec. The
red region of the chart represents RU/DU combinations
that support MACsec using encryption in the system we
used to evaluate performance. The grey region, signifying
MACsec without encryption, broadens the range of RU/DU
combinations at our disposal. Finally, the blue region intro-
duces a substantial number of additional combinations that

Fig. 12: Actual CT throughput (red) and CPU utiliza-
tion (blue) for different attempted transmission rates using
MACsec.

the considered evaluation system can accommodate without
using MACsec altogether.

It is important for researchers and system engineers to
understand the RU and DU capabilities and requirements
and the cost of enabling MACsec with or without encryption
before deploying systems. This work demonstrates that
there are combinations of RU/DU that support MACsec,
though the number of combinations is significantly smaller
than with no security. Therefore, security impacts the size of
the feasibility region of certain O-RAN deployments, and it
is fundamental to understand the security-latency trade-off
prior to deployment.

5.2 Throughput Analysis
We repeat the same experiment described in Sec. 4.3 for the
Open Fronthaul. The maximum throughput for our local
emulation environment is approximately 2300 Mbps, as seen
in Fig. 12. Based on these results we again conclude that
CPU utilization is a key factor when adding MACsec.
However, unlike in the case of the E2, the CPU utilization
is not above 95%. This suggests there may be other limiting
factors, which we discuss further in Sec. 6.3.

We also study the impact of total throughput on delay
specifically for the Open Fronthaul. For this experiment,
we again use iperf3 to generate increasing traffic load.
Simultaneously, we use ping with two different fixed-size
packets to evaluate the RTT. We repeat the experiment with
small (300 Byte) and large (8172 Byte) packets. We subtract
the known transmission and propagation delays. In this
experiment, unlike the previous ones, there may be queuing
delays at the NIC as the iperf3 and ICMP traffic compete
for the same physical interface. The RTT is therefore given
by RTT = 2 × (Dproc + Dqueue). However, in Sec. 2.3 we
show that the added queuing delay is negligible when the
queue arrival rate is less than 9.78 Gbps. Thus, we can again
approximate RTT ≈ 2 × Dproc and solve for the added
processing delay.

Fig. 13 shows the results of this experiment and illus-
trates the impact of throughput on delay. First, we observe
that packet size tends to have less impact than the overall
transmission rate. Second, we again observe that MACsec
with encryption has a higher cost, in terms of increased
latency, compared to MACsec without encryption. While
both methods achieve a similar maximum throughput, the

10

Fig. 13: Open Fronthaul processing delay as a function of
attempted transmission rate.

maximum latency for MACsec with encryption is about
4.3 ms while the maximum latency for MACsec without
encryption is about 3.2 ms. In other words, the specific
MACsec configuration is a key factor in determining Open
Fronthaul throughput and latency.

5.3 MTU Analysis
The MTU of a network path is determined by the mini-
mum MTU supported by any device along that path. This
becomes critical when analyzing the Open Fronthaul. Not
only could a disaggregated RU and DU be deployed in
physically separate locations, but a single entity may not
control the entire network path between them.

We designed an experiment to better understand the
impact of different MTU sizes on the Open Fronthaul traffic.
We send a large file, 4.66 GB, using iperf3 over our emulated
Open Fronthaul interface using MACsec with encryption
enabled. We chose a large enough file to saturate the link
for around 15 seconds based on the maximum observed
throughput of approximately 2.5 Gbps. We repeat this ex-
periment while incrementing the MTU size from 1400 Bytes
to 9000 Bytes. We record the total time to complete the
transmission as well as the average throughput for the
duration of the transmission.

Fig. 14 shows the results of our MTU analysis. As the
MTU increases, the time to send a large file decreases
and the effective throughput increases. Increasing the MTU
size from 1400 Bytes to 9000 Bytes improves performance
(reduces delay) by approximately 20%. From these results,
we conclude that, for the large packet sizes and high data
rates observed in the Open Fronthaul, MTU size is a critical
factor.

6 COST OF SECURITY KEY PRINCIPLES

Although the results presented so far show trends and
phenomena that are transferable to any deployment con-
figuration, it is important to point out that the exact values
of all these results depend heavily on the specific system re-
sources and network topology considered. In the following,
we make an effort to extend our analysis to a more general
configuration. Specifically, we present four key principles
from lessons that we learned to enable researchers and
system architectures to build security by design in O-RAN
systems.

Fig. 14: MTU size impacts throughput (red) and delay (blue)
in our deployed system using MACsec with encryption. A
larger MTU provides better performance.

6.1 Sufficient Compute Resources

Sufficient processing power is one of the key trade-offs
required to enable encryption. Generalizing Table 2, we can
conclude that for any system operating over Gigabit Ether-
net, or faster, ∆Dtrans << ∆Dproc. From the calculations
in Sec. 2.3, we can see that for any network where the total
distance between the base station and near-RT RIC is in the
order of tens of kilometers or less, ∆Dprop << ∆Dproc.
We are confident that any additional queuing delays due to
encryption, ∆Dque ≈ 0 for nearly all conditions as shown
in Sec. 2.3. Therefore, for most O-RAN systems, the total
delay cost of encryption, ∆Dtotal can be approximated as
∆Dtotal ≈ ∆Dproc.

Even if these assumptions are not universally applicable
to a specific O-RAN system, adding encryption will impact
the processing delay. Any disaggregated gNB component
must have enough CPU resources to manage all of its
explicit functions. While 3GPP standards allow for the use of
secure gateways to deal with encryption, O-RAN standards
do not. This means that as the total traffic over the E2 and
Open Fronthaul interface (and other encrypted interfaces)
increases, the CPU resources needed for encryption alone
will increase. This could potentially impact the scalability
and costs of gNB components, especially the DU. System
designers can choose to add dedicated hardware for the
encryption to offload the CPU burden, increase the total
compute resources, or set strict limits on the amount of traf-
fic that can be sent over O-RAN open interface. Therefore,
system engineers must understand the amount of traffic
expected across a given interface and include the overhead
of encryption for that level of traffic in their compute and
hardware acceleration budget.

6.2 Specific Encryption Algorithms

The fundamental protection provided by IPsec is through
the encryption algorithm used to secure the payload. A
complete discussion of all possible encryption algorithms
(for example StrongSwan, supports 49 different encryption
algorithms [45]) is beyond the scope of this paper. Some
of these only perform encryption and require a separate
integrity hashing algorithm, while others are Authenticated
Encryption with Associated Data (AEAD) algorithms that
do not require separate integrity hashing algorithms. Even

11

limiting the scope of algorithms to those that are currently
known to be secure, there is a huge array of options.
However, as seen in Fig. 9, choosing the specific encryption
algorithm is incredibly important.

In contrast, MACsec uses a standard encryption algo-
rithm but offers two modes: plain text payload or encrypted
payload. As seen in Sec. 5.1 and 5.2 this distinction makes a
significant difference in the processing delay. System engi-
neers should make careful decisions about which method
to use for what traffic. For example, the U-plane traffic
is already encrypted by the PDCP layer between the UE
and CU. In other words, the U-plane traffic crossing the
Open Fronthaul already has confidentiality. Using MACsec
without encryption for U-plane traffic will provide the other
necessary security functions (authentication, integrity, and
replay protection) at a lower cost. On the other hand, the
synchronization and management plane may not provide
confidentiality at other layers, requiring the use of MACsec
with encryption.

While the O-RAN ALLIANCE guidance requires similar
security functions to be provided for most interfaces, the
specific security protocol and encryption algorithm used
must be carefully chosen to meet both security and system
performance requirements.

6.3 I/O Bottlenecks
In Fig. 12 we see that the actual throughput reaches a
plateau while the CPU utilization is only around 80%. Also,
as discussed in Sec. 4.3, while we observe similar patterns
with all encryption algorithms, for some the CPU utilization
plateaus around only 50%. While this observation does not
diminish the importance of optimizing the specific protocol
and encryption algorithm used, it does indicate another
factor plays a key role; namely the I/O operations between
kernel space and user space in Linux.

Network packet processing for encrypted traffic in the
Linux kernel can be significantly slow due to context switch-
ing associated with system calls and transitional copy oper-
ations in packet traversal through all network layers [46].
Specifically for StrongSwan, there is a significant bottleneck
from user/kernel space context switching. Prior work [46]
achieves roughly a 3.5x increase in throughput and a 2.5x
decrease in latency by removing or optimizing these I/O
operations. Other methods of improving I/O bottlenecks
include offloading workload from the CPU to the NIC,
reducing the number of interrupts generated by incoming
traffic, optimizing the basic Linux Kernel network stack,
and moving network functions entirely to user space such
as with DPDK [47]. It is vital for O-RAN system design-
ers, working with distributed and compute constrained
devices, to understand the existing network stack I/O
bottlenecks and properly optimize each component.

These first three principles are often highly dependent
on each other. For example, our Open Fronthaul system
using the Mellanox ConnectX-6 does not support hardware
acceleration of MACsec. However, it does support hardware
acceleration of IPsec when using AES-GCM. It also supports
TLS data-path offloading and keeping all the TLS functions
in the U-plane. A comprehensive systems engineering ap-
proach is essential for optimizing the interplay among these
considerations.

Fig. 15: Modeled impact of MTU size on throughput (red)
and delay (blue) using MACsec with encryption. A larger
MTU provides better performance.

6.4 MTU size

We clearly see that a larger MTU provides better perfor-
mance in our emulation environments. Much of this im-
provement comes from the reduction in overhead by using
less total packets. For example, with a payload of exactly
8000 Bytes, the amount of overhead with an MTU size
of 4000 Bytes will be double the overhead compared to a
network with an MTU of 8000 Bytes. The experiments we
perform involve transferring a large, fixed amount of data.
While this is a good approximation to the Open Fronthaul
and provides measurable metrics, it does not exactly match
the nature of the Open Fronthaul interface. Instead, we
observe that the Open Fronthaul sends fixed packet sizes
(7678 Bytes) at regular intervals.

We built a model based on our observations to un-
derstand the impact of MTU size on regular, fixed-size
packets. We use 8192 Bytes as the payload size because it
is the maximum eCPRI payload size. We calculate the total
overhead based on the number of packets the payload must
be fragmented into and calculate the delay of each packet
based on packet size using Eq. 1 and Fig. 11. We calculate
the throughput as the total bits sent over the total delay. The
results of the model are seen in Fig. 15.

The general trends of our model closely match our
experimental results. However, there is one key difference.
Our experiment shows continuous improvement in perfor-
mance with increasing MTU size. For a fixed file size, this
intuitively makes sense as it minimizes the total amount of
overhead compared to the total file size. In contrast, our
model shows that setting the MTU to 5000 Bytes gives
better performance than 8000 Bytes. In other words, for
fixed size packets transmitted with regular frequency, if
fragmentation must happen, it is best to split the payload
as evenly as possible. This is because the processing delay
increases significantly with packet size, as shown in Fig. 11,
while the other delays are essentially constant. Splitting a
fixed amount of data into two equal chunks results in lower
processing delay than one large and one small chunk.

In either case, the best option is to ensure the entire
network path has an MTU of 9000 Bytes. However, it is
likely that a single entity will not control the entire network
path between the RU and DU in future O-RAN systems. In
this case, system engineers must determine the maximum
MTU of the network path and carefully select the optimal

12

MTU size for the distributed RU and DU.

7 CONCLUSIONS

5G stands as a critical strategic technology, offering en-
hanced performance and data-driven intelligent capabilities
[13]. O-RAN, driven by its open interfaces and adaptable
RICs, plays a pivotal role in harnessing these capabilities. It
empowers the customization of radio resource management
through powerful ML-driven xApps/rApps while exposing
valuable telemetry. Given the paramount importance of
safeguarding O-RAN’s open links, this article conducts a
comprehensive experimental and theoretical analysis of the
E2 and Open Fronthaul interfaces, aligning with O-RAN
specifications [12, 21, 23, 24, 26], using the world’s largest
emulator, Colosseum [15] and a private, 5G and O-RAN
compliant network.

We implement various security protocols (IPsec for E2,
MACsec for Open Fronthaul) and employ diverse encryp-
tion techniques to assess their impact on critical network
performance metrics. Our analysis covers key parameters
like processing delay and throughput, accompanied by
detailed quantitative insights. Notably, we find that the
cost of securing O-RAN for the E2 interface remains low,
while MACsec is more likely to exert a significant impact
on the Open Fronthaul interface. We conclude that system
designers must ensure O-RAN disaggregated nodes possess
sufficient computing resources, make judicious protocol and
encryption algorithm selections, optimize I/O bottlenecks,
and manage local MTU settings with an understanding of
the end-to-end network MTU.

Although significant progress has been made, there is
still substantial work to fully comprehend O-RAN security
and the associated costs. Ensuring security in a multi-
vendor xApp environment is a largely open problem with
possible hidden expenses. One potential solution is adopt-
ing a zero-trust approach [5, 13], which presents a promis-
ing framework but has yet to be implemented. Continued
efforts are required to shape the future of secure O-RAN
systems.

REFERENCES
[1] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Under-

standing O-RAN: Architecture, Interfaces, Algorithms, Security,
and Research Challenges,” IEEE Communications Surveys & Tutori-
als, 2023.

[2] O-RAN Working Group 1, “O-RAN Architecture Description
5.00,” ORAN.WG1.O-RAN-Architecture-Description-v05.00, Tech.
Rep., July 2021.

[3] J. Thaliath, S. Niknam, S. Singh, R. Banerji, N. Saxena, H. S.
Dhillon, J. H. Reed, A. K. Bashir, A. Bhat, and A. Roy, “Predic-
tive Closed-Loop Service Automation in O-RAN Based Network
Slicing,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp.
8–14, Sep. 2022.

[4] C. Shen, Y. Xiao, Y. Ma, J. Chen, C.-M. Chiang, S. Chen, and Y. Pan,
“Security Threat Analysis and Treatment Strategy for ORAN,”
in 2022 24th International Conference on Advanced Communication
Technology (ICACT). IEEE, 2022, pp. 417–422.

[5] K. Ramezanpour and J. Jagannath, “Intelligent zero trust architec-
ture for 5G/6G networks: Principles, challenges, and the role of
machine learning in the context of O-RAN,” Computer Networks, p.
109358, 2022.

[6] A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic,
“Toward Next Generation Open Radio Access Networks–What O-
RAN Can and Cannot Do!” IEEE Network, 2022.

[7] J. Groen, S. D’Oro, U. Demir, L. Bonati, M. Polese, T. Melodia,
and K. Chowdhury, “Implementing and Evaluating Security in
O-RAN: Interfaces, Intelligence, and Platforms,” arXiv preprint
arXiv:2304.11125, 2023.

[8] J. Y. Cho and A. Sergeev, “Secure Open Fronthaul Interface for
5G Networks,” in Proceedings of the 16th International Conference on
Availability, Reliability and Security, ser. ARES 21. New York, NY,
USA: Association for Computing Machinery, 2021.

[9] W. Tiberti, E. Di Fina, A. Marotta, and D. Cassioli, “Impact of Man-
in-the-Middle Attacks to the O-RAN Inter-Controllers Interface,”
in 2022 IEEE Future Networks World Forum (FNWF), 2022, pp. 367–
372.

[10] S.-H. Liao, C.-W. Lin, F. A. Bimo, and R.-G. Cheng, “Development
of C-Plane DoS Attacker for O-RAN FHI,” in Proceedings of the 28th
Annual International Conference on Mobile Computing And Network-
ing, ser. MobiCom ’22, 2022, p. 850–852.

[11] J. Boswell and S. Poretsky, “Security considerations of Open
RAN,” Stockholm: Ericsson, 2020.

[12] O-RAN Working Group 3, “Near-Real-time RAN Intelligent
Controller Architecture & E2 General Aspects and Principles,”
ORAN.WG3.E2GAP-v02.02, Tech. Rep., July 2022.

[13] D. of Defense, “5G Strategy Implementation Plan,” Department
of Defense, Tech. Rep., December 2020, accessed: 2024-02-15. [On-
line]. Available: https://apps.dtic.mil/sti/pdfs/AD1118833.pdf

[14] D. Dik and M. S. Berger, “Transport security considerations for
the open-ran fronthaul,” in 2021 IEEE 4th 5G World Forum (5GWF),
2021, pp. 253–258.

[15] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder et al., “Colos-
seum: Large-scale wireless experimentation through hardware-in-
the-loop network emulation,” in 2021 IEEE International Sympo-
sium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2021,
pp. 105–113.

[16] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open-
RAN Gym: An Open Toolbox for Data Collection and Experimen-
tation with AI in O-RAN,” in 2022 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2022, pp. 518–523.

[17] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An
open and softwarized prototyping platform for NextG systems,”
in Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, 2021, pp. 415–426.

[18] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing machine learning-based xApps for open RAN
closed-loop control on programmable experimental platforms,”
IEEE Transactions on Mobile Computing, 2022.

[19] D. Villa, I. Khan, F. Kaltenberger, N. Hedberg, R. S. da Silva,
A. Kelkar, C. Dick, S. Basagni, J. M. Jornet, T. Melodia, M. Polese,
and D. Koutsonikolas, “An Open, Programmable, Multi-vendor
5G O-RAN Testbed with NVIDIA ARC and OpenAirInterface,”
2023.

[20] J. Groen, B. Kim, and K. Chowdhury, “The Cost of Securing O-
RAN,” in IEEE International Conference on Communications (ICC),
2023.

[21] O-RAN Working Group 4, “O-RAN Fronthaul Control, User and
Synchronization Plane Specification v12,” O-RAN.WG4.CUS.0-
R003-v12.00, Tech. Rep., June 2023.

[22] P. S. Upadhyaya, A. S. Abdalla, V. Marojevic, J. H. Reed, and V. K.
Shah, “Prototyping Next-Generation O-RAN Research Testbeds
with SDRs,” arXiv preprint arXiv:2205.13178, 2022.

[23] O-RAN Working Group 11, “Security Requirements Speci-
fications,” O-RAN.WG11.Security-Requirements-Specification.O-
R003-v06.00, Tech. Rep., June 2023.

[24] ——, “Security Protocols Specifications,” ORAN.WG11.Security-
Protocols-Specifications-v04.00, Tech. Rep., July 2022.

[25] O-RAN Working Group 4, “O-RAN Management Plane Specifica-
tion 12.0,” O-RAN.WG4.MP.0-R003-v12.00, Tech. Rep., June 2023.

[26] O-RAN Working Group 5, “Transport specification,”
ORAN.WG5.Transport.0-v01.00, Tech. Rep., March 2020.

[27] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” Aug 2018. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8446.txt

[28] “IP Authentication Header,” Dec 2005. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4303.txt

[29] “IP Encapsulating Security Payload (ESP),” Dec 2005. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4303.txt

[30] S. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey,
and S. R. Sharma, “Guide to IPsec VPNs:.” NIST Special Publication,

13

2005.
[31] “IEEE Standard for Local and metropolitan area networks-Media

Access Control (MAC) Security,” IEEE Std 802.1AE-2018 (Revision
of IEEE Std 802.1AE-2006), pp. 1–239, 2018.

[32] “IEEE Standard for Local and Metropolitan Area Networks–Port-
Based Network Access Control,” IEEE Std 802.1X-2020 (Revision
of IEEE Std 802.1X-2010 Incorporating IEEE Std 802.1Xbx-2014 and
IEEE Std 802.1Xck-2018), pp. 1–289, 2020.

[33] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach, Seventh Eddition, 2017.

[34] strongSwan, “Strongswan.” [Online]. Available:
https://www.strongswan.org/

[35] V. K. Choyi, A. Abdel-Hamid, Y. Shah, S. Ferdi, and A. Brusilovsky,
“Network slice selection, assignment and routing within 5G Net-
works,” in 2016 IEEE Conference on Standards for Communications
and Networking (CSCN), 2016, pp. 1–7.

[36] J. Groen, M. Belgiovine, U. Demir, B. Kim, and K. Chowdhury,
“TRACTOR: Traffic Analysis and Classification Tool for Open
RAN,” arXiv preprint arXiv:2312.07896, 2023.

[37] R. Stewart, “Stream control transmission protocol (RFC 4960),”
Tech. Rep., 2007.

[38] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced Encryption Standard (AES),” 2001-11-26
2001.

[39] Q. Dang, “Secure hash standard,” 2015-08-04 2015.
[40] A. Kelkar and C. Dick, “NVIDIA Aerial GPU Hosted AI-on-5G,”

in IEEE 4th 5G World Forum (5GWF), October 2021, pp. 64–69.
[41] OpenAirInterface Software Alliance. [Online]. Available:

https://openairinterface.org
[42] OnePlus. [Online]. Available:

https://www.oneplus.com/us/nord-specs
[43] S. Dubroca, “manpage: IP-macsec - macsec device configuration,”

2019. [Online]. Available: https://manpages.ubuntu.com/
manpages/jammy/en/man8/ip-macsec.8.html

[44] D. McGrew and J. Viega, “The Galois/counter mode of operation
(GCM),” submission to NIST Modes of Operation Process, vol. 20, pp.
0278–0070, 2004.

[45] “IKEv2 Cipher Suites :: strongSwan Documentation,” 2023. [On-
line]. Available: https://docs.strongswan.org/docs/5.9/config/
IKEv2CipherSuites.html

[46] S. Ullah, J. Choi, and H. Oh, “IPsec for high speed network
links: Performance analysis and enhancements,” Future Generation
Computer Systems, vol. 107, pp. 112–125, 2020.

[47] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and
G. Carle, “Comparison of frameworks for high-performance
packet IO,” in 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 2015, pp. 29–38.

Joshua Groen is a Ph.D. candidate at North-
eastern University. Previously he worked in the
US Army Regional Cyber Center – Korea as the
Senior Network Engineer. He received his BSE
(’07) and MS (’17) in Electrical Engineering re-
spectively from Arizona State University and the
University of Wisconsin. His research interests
include wireless communications, security, and
machine learning.

Salvatore D’Oro is a Research Assistant Pro-
fessor at Northeastern University. He received
his Ph.D. from the University of Catania in 2015.
He serves on the Technical Program Committee
of IEEE INFOCOM. His research focuses on
optimization and learning for NextG systems.

Utku Demir is a Postdoctoral Research Fellow
at Northeastern University, where he is sup-
ported by the Roux Institute’s Experiential AI
program. He received his PhD from the Univer-
sity of Rochester in 2020. His research interests
lie in the areas of wireless communications, mo-
bile networks, signal processing, and machine
learning.

Leonardo Bonati is an Associate Research Sci-
entist at Northeastern University. He received
his Ph.D. from Northeastern University in 2022.
His research focuses on softwarized NextG sys-
tems.

Davide Villa is a Ph.D. candidate at Northeast-
ern University. He received his B.S. in Com-
puter Engineering and his M.S. in Embedded
Computing Systems from University of Pisa
and Sant’Anna School of Advanced Studies in
2015 and 2018, respectively. His research inter-
ests focus on 5G-and-beyond cellular networks,
software-defined networking, O-RAN, and chan-
nel modeling.

Michele Polese is a Research Assistant Profes-
sor at Northeastern University. He obtained his
Ph.D. from the University of Padova in 2020. His
research focuses on architectures for wireless
networks.

Tommaso Melodia is the William Lincoln Smith
Professor at Northeastern University, the direc-
tor of the Institute for the Wireless Internet of
Things, and the director of research for the
PAWR Project Office. He received his PhD from
the Georgia Institute of Technology in 2007. His
research focuses on wireless networked sys-
tems.

Kaushik Chowdhury is a Professor at North-
eastern University, Boston, MA. He received his
PhD from Georgia Institute of Technology in
2009. His current research interests involve sys-
tems aspects of machine learning for agile spec-
trum sensing/access, unmanned autonomous
systems, programmable and open cellular net-
works, and large-scale experimental deployment
of emerging wireless technologies.

