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Abstract—Open RAN (O-RAN) has the potential for rev-
olutionizing not only cellular communication but also spec-
trum sensing by carefully controlling uplink/downlink traffic in
shared spectrum bands. In this paper, we present the design of
SenseORAN, which detects the presence of radar pulses within
the Citizens Broadband Radio Service (CBRS) band. SenseORAN
is especially useful for scenarios where these pulses (highest
priority) are fully overlapping with interfering LTE signals (sec-
ondary priority licensee), requiring immediate detection of such
an occurrence. This design paradigm of re-using existing cellular
infrastructure with ORAN-compliant sensing and communication
slices can potentially eliminate the need for dedicated spectrum
sensors along the coastline as well as severe restrictions on the
transmit power for the LTE operators that are enforced today.
Our approach involves a machine learning module deployed as
a Radar Detection xApp at the near-Real-Time (near-RT) Radio
Access Network (RAN) Intelligent Controller, i.e., near-RT RIC.
The base station or gNB (i) uses the you-only-look-once (YOLO)-
based machine learning framework that is modified to detect
radar signals present within spectrograms generated from I/Q
samples collected during the regular uplink cellular operation,
and (ii) maintains a list of ‘occupied’ channels in the 3.5GHz
CBRS band that indicate radar presence. Our design is validated
with (i) an over the air collected dataset composed of Type 1 radar
and standard-compliant LTE waveforms, and (ii) an experimental
testbed of SDRs running a complete Open RAN stack with a
near-RT RIC implementation integrated with our YOLO-based
xApp. We show radar detection accuracy of 100% under SINR
conditions ≥ 12 dB after combining 7 spectrograms into a single
decision. Furthermore, using testbed results, we demonstrate
that the gNB can be reconfigured to avoid radar interference
within 866ms, which represents a reduction of 85.5% over the
60 s response time mandated for pausing cellular operation in
detecting radar presence in the CBRS band today.
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(a) CBRS design today with sensors
s1, s2, s3 reporting to SAS.
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(b) Open RAN-based CBRS with
sensing only by BS b1, b2, b3, b4.

Fig. 1: Currently, ESC sensors s1, s2, s3 detect radar in the CBRS
band in (a), which may be subject to interference from cellular BSs
b1, b2, b3 shown by red arrows. The data from ESC sensors is reported
to the SAS. In the proposed architecture in (b), the b1, b2, b3 are
O-RAN compliant BSs, which use machine learning based xApps
in the near-RT RICs to accurately detect radar and for optimal
BS reconfiguration upon detected radars. This increases the sensing
region and reduces deployment overhead by re-using existing cellular
infrastructure.

I. INTRODUCTION

The scarcity of wireless spectrum has spurred interest in
spectrum sharing within federal bands, provided that the pri-
orities of the incumbents are protected. The CBRS band in the
3.55-3.7GHz frequency range is an illustrative example of this
shared-spectrum paradigm, where 4G LTE and 5G operators
(also called as Priority Access License or PAL users) and
unlicenced users (General Authorized Access or GAA users)
may coexist along with the higher priority naval radar. CBRS
defines a central entity, called SAS, that requires PAL and
GAA users to register and assigns medium access according
to the tiered priority scheme. Incumbent and PAL users are
protected from the GAA interference, but no interference
protection is guaranteed for GAA users [1], as shown in Fig. 2.

Within the CBRS band today, a number of dedicated envi-
ronmental sensing capability (ESC) sensors are deployed along
the coast for detecting radar pulses. We propose a radically
different vision in this paper, wherein we suggest eliminating
the need for ESC sensors. Instead, in SenseORAN, O-RAN
compliant base stations (BSs or interchangeably denoted as
gNBs) perform the task of sensing, with the goal of max-
imizing the accuracy of radar detection while maintaining
acceptable level of service for the associated clients. While
we frame the problem in context of ship-borne radar detection
in the CBRS band, SenseORAN is designed to be extensible in



other bands that are being considered for mixed use operation,
such as the 3.1-3.5GHz band, where the detection of mobile
radar incumbent becomes a challenging problem- no longer
can ESC be deployed only along the coastline (unlike CBRS).
These are complex decisions, where fixed policy-based ap-
proaches do not adapt well to dynamically changing mobile
radar trajectories, interference conditions, and cellular-traffic.
•Limitations of today’s CBRS architecture: Current CBRS
rules adopt a conservative approach, where cellular operators
are forced to operate hundreds of kilometers away from
the coast [2]. The transmission power is limited to 50W
(37 dBm/MHz) [3], such that the aggregated interference
and noise power at ESCs is below −109 dBm/MHz [4].
This aims to minimize interference to the ESC, as the latter
must detect the radar even when there is an active PAL user
transmitting (see Fig. 1a). While effective, such rules drasti-
cally reduce cellular coverage and connectivity in the coastal
regions of the country, which also contain high population
density. CBRS rules also do not specify how to detect radar
pulses if they are fully overlapping within a cellular signal.
ESC sensors are deployed by private companies after federal
certification, which increases cost of the overall roll-out and
forces judicious selection of installation locations (there are
only 220 ESCs along the entire US seaboard as per data
retrieved in August 2020 [5]). Finally, other spectrum bands,
e.g., 3.1-3.45GHz [6], are being considered for sharing that
have incumbent radar with greater flexibility of motion, such
as airborne or terrestrial radar. A limited number of ESCs
cannot cover the vast geographical span needed to monitor for
radar, and also wide-scale curtailing the transmission power of
cellular BSs may defeat the premise of enhance connectivity
through spectrum sharing. For these reasons, we propose a
solution based on two transformative technologies: (i) machine
learning for radar signal detection and (ii) optimizing the
parameters of a programmable and O-RAN-compliant cellular
network.
•Proposed approach: Our solution to the above problems
is intuitive: we propose to shift the burden of spectrum
sensing to the PAL users/cellular operators, where a gNB acts
as pseudo ESC, reporting any detected radar pulses to the
spectrum access system (SAS), as shown in Fig. 1b. While
dense deployment of such gNBs will undoubtedly increase
the sensing region, how to perform sensing effectively and
reconfigure the PAL users still remains an open challenge.
For this, we propose a two-stage approach involving machine
learning for radar detection. Stage I: Sensing slice: In this
stage, each gNB senses the RF spectrum of interest for a finite
duration of time to create a spectrogram, which is then given as
input to a trained image classification network using machine
learning and implemented as an xAPP in the near-RT RIC. The
use of spectrograms overcomes the privacy issues related to
storing and transporting in/quadrature-phase (I/Q) samples. We
show how off-the-shelf convolutional neural network (CNN)
architectures, e.g., YOLOv3 [7], can be effective in detecting
radar pulses, even when they fully overlap a wider LTE/5G
signal and under diverse traffic conditions. Stage II: Network
reconfiguration: In this stage, all cellular network operations
are turned off such that the bands where radar is detected are

excluded for future use for communication. This is compliant
with the current CBRS procedures, which gives full priority
to radar users.

Since these are both external approaches that are not inte-
grated within the 5G standard, the only way to realistically de-
ploy such forward looking strategies is to adopt programmable
cellular network standards, where interfaces are open to hard-
ware and software components from different vendors. For
this reason, we choose the O-RAN framework [8], where both
the Stage I YOLO and the Stage II BS reconfiguration are
executed within xApps, in near-RT RICs that have access times
of around 10ms-1 s, as shown in Fig. 1b (Sec. III-B gives more
O-RAN details).
•Contributions in O-RAN based sensing for CBRS: Incor-
porating sensing capabilities as part of the O-RAN architec-
ture, while being CBRS compliant, poses several challenges.
We summarize them below:

• SenseORAN’s machine learning modules must be
wrapped within a specific format called as an xApp, in
which the time needed to collect sensed data, create spec-
trograms, relay them over O-RAN standardized interfaces
(e.g., the E2 interface connects the PHY layer) to the
near-RT RIC, execute the models and then obtain back the
outcomes must be within a fraction of the permissible 60 s
of reporting window allowed by the Federal Communica-
tions Commission (FCC) for classical ESC operation [4].
We characterize delays over interfaces, compute end-to-
end processing times, and other O-RAN specific practical
overheads that can impact latency and accuracy of our
xApp decision in Sec. VIII-A.

• We minimally modify YOLOv3 to enable the model
to detect embedded radar pulses within cellular signals.
Specifically, our model is trained in an over-the-air (OTA)
collected dataset. We consistently achieve a recall of
100% at the radar SINR level of 20 dB, which is the
highest allowed SINR value by the FCC [9]. In fact,
we obtain 100% recall at the radar SINR level of as
low as 12 dB under low-noise high-interference scenarios,
exceeding the FCC requirement overwhelmingly. We
evaluate the performance of our model over different
traffic conditions, SINR and INR values, and number
of available spectrograms. We showcase our SINR de-
pendent evaluation in Secs. VIII-B-VIII-C.

• The CBRS band mandates that cellular systems operate
in Time Division Duplexing (TDD), where both uplink
(UL) and downlink (DL) share the same frequency band.
Thus, given the cellular frame structure, continuous data
collection for radar detection might not be possible and
different sub-frames need to be appended to generate
a spectrogram that is representative of the band being
sensed. We discuss creating this custom-spectrogram fur-
ther in Sec. VI-A.

• As shown in Fig. 1b, a single near-RT RIC may serve
multiple BSs, which raises concerns of congestion on
the E2 interface. We evaluate the congestion effect in
Sec. VIII.

• Running radar detection as part of the O-RAN architec-
ture in form of an xApp presents certain system level



challenges. We have implemented the YOLO based xApp
using open source libraries (srsRAN) and real hardware
(Sec. VII). We release all simulation and over-the-air
datasets for radar detection, YOLOv3 model [10], and
open source O-RAN implementation code [11] to the
community for further research.

II. RELATED WORK

A. Prior work on O-RAN

Polese et al. [12] provide detailed review of the fundamen-
tals of O-RAN architecture, interfaces, security, algorithms,
and outline future research areas. There are a number of
systems level and tool development efforts that continue to
benefit the research community: In [13], Upadhyaya et al.
create a prototype testbed for O-RAN for next generation
implementations using USRPs. Their implementation is based
on srsRAN and they focus on the E2 interface, by develop-
ing two xApps for the near-RT RIC. The first xApp is an
improved version of the KPIMON xApp, which collects key
performance indicators and developed by the O-RAN Software
Community. The second xApp is an extended version of the
RAN slicing xApp by POWDER [14]. However, this work is
yet to be integrated in other types of cellular deployments, such
as CBRS. Bonati et al. [15] introduce an open and virtualized
prototyping platform for next generation cellular systems,
called SCOPE. SCOPE is a ready-to-use portable container
that embodies various wireless deployments. SCOPE’s pro-
tocol stack is based on srsRAN, but the authors introduce
network slicing, additional MAC-layer scheduling policies, the
PHY-layer parameter change capability, and a data collection
module for ML/AI applications. The authors tested SCOPE on
the NSF Colosseum, world’s largest wireless emulator, an in-
door testbed called Arena, and NSF POWDER, a community-
scale testbed and part of the PAWR family of externally
accessible platforms by training a Deep Q-Network agent,
which is a Deep Reinforcement Learning (DRL) solution for
problems with discrete actions. This agent adapts slicing and
scheduling schemes at run time to maximize the network
throughput.

D’Oro et al. [16] introduce the concept of an rApp, named
OrchestRAN, which operates in the non-RT RIC and aims for
network automation in an O-RAN setting. They formulate the
problem in a tree structure, in which there is a flow of network
packages and also has option to share models among the O-
RAN nodes. The rApp in this work computes the optimal set of
data-driven algorithms and their execution location to achieve
specifications from network operators. The authors evaluate
the rApp using its model sharing feature, achieved throughput,
and buffer sizes.

In [17], Polese et al. propose an xApp for automatic control
of an O-RAN based cellular network. They again use DRL
to perform scheduling and network slicing, e.g. categorizing
user based on their data usage, which is based on [15]. In
addition to evaluating achieved throughput, they also show
how online training can help pre-trained models evolve and
meet the demands of the specific deployment environment.

B. Prior work on CBRS

Soltani and Chaudhary et al. [18] propose a new ESC sensor
concept in the CBRS band, called ESC+. Their aim is to detect
radar and cellular signals (authorized and unauthorized users).
They feed spectrograms into a custom made neural network
(NN) to detect aforementioned identities in two stages. In the
first stage, signal regions are detected coarsely to focus on,
because radar pulses have much smaller duration compared
to cellular users. Then, a finer search is applied to detect
radar signals. They achieve 100% accuracy using simulated
data. Lees et al. [19] show that deep learning methods
outperform classical methods in signal detection when they
use spectrograms, by comparing 13 different methods. In
the end, they demonstrate that their 3-layer NN architecture
offers the best accuracy vs. computational complexity tradeoff,
achieving 0.99 for the area under the curve (AUC) metric
for Receiver operating characteristic (ROC) curves. Caromi et
al. [20] propose several CNNs to detect signals in the CBRS
band. They utilize raw signal magnitudes and spectrograms
in their models to detect the presence and absence of radar
signals. In their previous work [21], they propose detecting
radar signals through Support Vector Machines (SVM), which
is trained using field measurements with additional computer
generated LTE and Gaussian noise signals. Sarkar et al. [22]
propose a deep learning based real-time ESC sensor using
signal spectrograms for detecting radar signals and estimating
their bandwidth. Their YOLO-based method is able to detect
radar signals with the accuracy of 99% in the presence of noise
using SDRs. However, no prior work has studied this problem
under different noise and interference ratios, as we describe
in Sec. VI.

Yinget al. [23] propose a graph theory based formulation
that will allow SAS-assisted dynamic channel assignment
among PAL and GAA users in the CBRS band, by mitigating
their interference towards each other. They solve their formu-
lation via heuristic methods, which is evaluated in simulations
using WiFi hotspot data, achieving 93% consistent service for
GAA users. Grissa et al. [24] approach the channel access
problem in the CBRS band from a privacy angle, by reducing
the sensitive information required to share for GAA users to
obtain spectrum availability information, while still abiding the
FCC regulations. Their proposed framework, TrustSAS, makes
use of cryptography and blockchain elements, by forming
GAAs into clusters, where cluster leaders are responsible for
overall cluster dynamics by employing multi-server private
information retrieval (PIR) protocol.

C. Novelty over Prior Work

In summary, state-of-the-art CBRS work has evolved in
two mutually exclusive directions i) signal detection, and
ii) channel allocation for secondary users. However, a fully
operational CBRS system must take both the aforementioned
direction together. Also, to the best of our knowledge, except
a conceptual study, where Smith et al. [25] propose utilizing
O-RAN for spectrum sharing between 5G and government
satelite systems, there is no actual implementation of CBRS
band channel access in the O-RAN context. SenseORAN
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Fig. 2: CBRS tiers.

distinguishes itself from prior work for CBRS via i) integrating
signal detection, specifically radar, and channel allocation into
one holistic study, ii) implementing the proposed idea using
well known standard-compliant software that facilitates future
adoption into the next generation cellular systems, i.e., O-
RAN, iii) release of the dataset and models that we use in this
unique study. Additionally, we propose using already available
base stations for ESC sensors, and this architectural novelty
not only will provide cost reduction, but also expand the radar
sensing capability for aerial and terrestrial vehicular radars.

III. MOTIVATION FOR O-RAN IN THE CBRS BAND

In this section, we describe the spectrum access method-
ology in the CBRS band and how the O-RAN relevant
architectural elements can be beneficial for radar detection in
this band.

A. Current Cellular Technology in the CBRS Band

As described in Sec. I, the CBRS band presents a tiered
structure (Fig. 2), where different users can access the medium
with different priority levels depending on their category. In
this work, we focus on the first two tiers, where radar and 5G
are the incumbent and PAL users, respectively. Incumbents can
access the medium with no constraints and the ESC sensors
notify the SAS when they are detected in a specific band.
However, relying on dedicated sensing infrastructure for radar
detection requires sensors to be deployed all over the coastline.
Instead, we propose to reuse the existing cellular infrastructure
to also serve as sensing equipment. In particular, we aim to use
existing BSs to run radar detection algorithms on top of their
regular communication operations. However, such paradigm
is not supported by current cellular infrastructure, which tend
to be proprietary with vendor-locked black-box designs. This
makes it difficult for third parties to design solutions that
extend the abilities of the cellular infrastructure. To this
end, we leverage O-RAN, an emerging and transformative
paradigm for cellular technology that incorporates computing
capabilities and open interfaces. It allows ML algorithms to
run as part of the architecture and as we show in this paper,
the ML models can be deployed for sensing tasks, apart from
controlling network slices. In the following subsection, we
briefly review O-RAN concepts and its architectural elements
that are most relevant to this work.
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Fig. 3: Basic O-RAN architecture (given in (a)) consists of RAN
nodes (RU, DU, and CU), near-RT RIC and non-RT RIC, which
hosts third party xApps and rApps, respectively. RAN nodes provide
network data to the RICs, which in turn return critical network
decisions through open interfaces. Higher level O-RAN components
are able to control multiple lower level components (given in (b)),
creating a tree-based control structure over the entire network.

B. O-RAN vs. Existing Cellular Technologies

O-RAN allows disaggregated design, where multiple com-
ponents are interconnected through open interfaces. Addi-
tionally, O-RAN also introduces different RAN Intelligent
Controllers (RICs) that reconfigure and optimize the network
by leveraging data collected at multiple points across the
protocol stack. This approach poses a radical change in the
way cellular networks are designed, where RAN components
are sold by vendors as integrated solutions. The latter typically
implement every layer of the protocol stack and provide no
reconfiguration opportunities to operators. All these features
that O-RAN has to offer reflect into lower operational and
deployment costs, also fostering agile updates, innovation,
and market competitiveness [12]. Therefore, we utilize the
possibility of defining custom sensing slices through O-RAN
to achieve our goal of radar detection in the CBRS band. Next,
we summarize the O-RAN interfaces, the node structure and
the RICs that are relevant to SenseORAN.
O-RAN Nodes. O-RAN architecture, shown in Fig. 3a,
extends 3GPP’s 7.2 split, distributing the functionalities of
the Radio Access Network (RAN) among Radio Unit (RU),
Distributed Unit (DU), and Control Unit (CU), which are
collectively known as RAN nodes. For further details, we refer
the reader to [12].
O-RAN Interfaces. Communication and data exchange
through open interfaces provide compatibility among network
components from different vendors. This eliminates the con-
cept of black box, enabling more democratic, innovative, and
competitive cellular market. In this work, we focus on the
E2 interface, which provides connectivity between the BS
and near-RT RIC (Fig. 3a). Solutions running at the near-RT
RIC are encapsulated into xApps, which are applications that
support custom logic for radio resource management through
standardized interfaces.
O-RAN Components. O-RAN introduces two RICs that
provide management and control in the network at i) near-
real-time (near-RT), with response times between 10ms and
1 s, and ii) non-real-time (non-RT), with response times > 1 s



(Fig. 3a). In this work, we focus on the near-RT RIC, which
is where the BS reconfiguration and radar detection algorithm
will run as custom-designed xApps. As mentioned previously,
the near-RT is connected to the BS through the E2 interface,
which will be used to share spectrogram information at the
near-RT RIC and reconfigure the BS if a radar transmitter is
present.

C. O-RAN in the CBRS band

As mentioned earlier, regular 4G/5G cellular infrastructure
does not support radar detection, or running intelligence in
general, as part of an already existing deployment. Never-
theless, radar detection is a tempting service opportunity for
cellular operators, as this opens doors for service charge,
i.e. more revenue, and faster cellular service adaptation, i.e.
shutting down immediately rather than waiting for SAS orders,
which depend on ESC sensors. We describe the radar detection
steps as part of an O-RAN deployment in Fig. 5. The data
collection happens at the BS, where I/Q samples are captured.
Cellular systems in the CBRS band are required to operate
in TDD mode. Hence, both UL and DL transmissions are
scheduled within the band of interest. For seamless regu-
lar communication operation, we only collect spectrum data
during the UL time slots, where the BS is guaranteed to
be in receive mode and I/Q samples would be coming in
independently of the sensing approach proposed in this paper.
Notice that the O-RAN standard does not allow transmitting
I/Q samples to the RICs, given that such high volumes of
data could potentially saturate the interfaces. Additionally,
I/Q samples contain user information, which raises privacy
concerns if they are transferred outside of the BS. Therefore,
SenseORAN relies uniquely upon spectrogram images, which
completely resolve the privacy concern since they do not
allow data decoding. Next, the spectrogram is sent to the
near-RT RIC, where our custom-designed xApp runs the ML-
based radar detection module. We give further details about
our radar detection approach in Sec. VI. SenseORAN also
supports combining multiple spectrograms for improved radar
detection, which would require repeating the previous steps
over time. Finally, if radar presence is detected, the xApp
reconfigures the BS operation to vacate the channels where
radar is detected and actively operating.

IV. SENSEORAN SYSTEM MODEL

A. Interference during Sensing and Communications

We assume a cellular deployment in the CBRS band,
composed of a BS and a number of user equipments (UEs)
associated with the BS. As per the FCC CBRS regulations,
the cellular network works in TDD mode. Additionally, a
radar transmitter may also present and the resulting radar
pulses need to be sensed at the BS. The relative power
level of these signals are dependent on different scenario
parameters, such as distance, transmission power or noise
floor, all of which impact detection accuracy. We encompass

Frame 0 Frame 1 Frame 2

10 ms 10 ms 10 ms

D S U U D D S U U D

10 subframes

Fig. 4: TDD frame structure, where each subframe has a duration
of 1ms. An example standardized subframe configuration is shown
above, where U and D represent Uplink and Downlink, respectively.

such factors by defining the peak-to-average signal-to-noise-
ratio (SINRsensing), expressed as:

SINRsensing =
Pr/Br

PC/BC + Pn/fs
(1)

where Pr is the radar peak power and PC and Pn are the av-
erage cellular interference and noise powers. Additionally, Br,
BC and fs are the radar and cellular signal bandwidths, and
the sampling rate in MHz, respectively. Notice that every term
is normalized by its bandwidth and expressed in [W/MHz],
given that every signal might have different bandwidths.

Next, we define SINRcomms as the measured SINR
during regular cellular uplink operation, which translates into
S being the UE signal and I being the interfering radar signal.
We express SINRcomms as:

SINRcomms =
NFFT

T

αPC

Pr + Pn
+

T −NFFT

T

αPC

Pn
(2)

where T is the radar period and NFFT is the 5G FFT size.
α is the ratio Nsc/NFFT , with Nsc as the number of sub-
carriers used by the cellular waveform. Notice that not every
OFDM symbol will undergo radar interference. In particular,
the probability of radar interference can be computed with the
quotient NFFT

T . Hence, Eq. 2 averages the instant SINR for
the symbols that will be affected by radar interference and the
symbols that do not.

B. Radar Detection Using TDD Uplink Subframes

Following the assumptions above, SenseORAN only relies
on UL subframes to collect sensing data. Notice that col-
lecting inference data during the DL operation would require
completely interrupting the regular communication operation,
given that the BS should stop all transmissions to the associ-
ated UEs to collect the I/Q samples necessary to generate one
or multiple spectrograms. Instead, UL-based sensing simply
reuses the I/Q samples that are passed through the regular
cellular receiver pipeline.

As we denote in Fig. 4, the number of UL and DL subframes
in a TDD frame varies depending on the link configuration. For
instance, 4G presents seven different subframe configurations
in its TDD structure [26], expressed as Ci, with 0 ≤ i ≤ 6.
Notice that the number of available UL subframes per TDD
frame will impact the total time required to capture I/Q
samples that are necessary to generate one spectrogram input
to the xApp. We further analyze the total delay required to
collect the required number of UL subframes in Sec. VIII-A.
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image. Then, the spectrogram is sent to the near-RT RIC over the E2
interface and is used as an input to the radar detection xApp. Finally,
the BS configuration is updated if an operating radar is detected.

Additionally, we note that different TDD UL subframes are
concatenated to generate a single spectrogram. Given that the
radar pulse repetition period is smaller than one subframe
length, each subframe is guaranteed to capture one radar pulse.
However, given that different UL subframes are not captured
sequentially, radar pulses will look unevenly separated within
the generated spectrogram. Our radar detection approach is
proven to be robust to such phenomenon, as we show in
Sec. VI.

C. SenseORAN System Overview

We show the overall system operation of SenseORAN in 4
steps, as depicted in Fig. 5. We describe them below:
1) Generating spectrogram from I/Q samples: I/Q samples
are collected from UL subframes, as we describe in Sec. IV-B.
The number of subframes is dependent on the spectrogram
size and the total number of spectrograms. In this work, we
fix the spectrogram length to 10ms. We further describe the
spectrogram generation in Sec. VI-A and the impact of using
multiple spectrograms in Sec. VIII. Spectograms are generated
at the BS itself, to avoid sending storage-heavy I/Q samples
over the E2 interface. Additionally, I/Q samples cannot leave
the BS due to privacy concerns.
2) Sending spectrograms to the near-RT RIC : The E2
interface is used to share the BS-generated spectrograms with
the near-RT RIC, which runs the radar detection ML models.
We analyze the E2 interface latency and spectrogram overhead
in Sec. VIII.
3) Running radar detection xApp: Using the spectrogram
input, the presence of radar, if any, is detected by the xApp that
we previously trained and deployed at the near-RT RIC. The
xApp is based on state-of-the-art YOLOv3 image detection
algorithm [7]. We provide further details on the radar detection
approach in Sec. VI-B and its performance in Sec. VIII.

Additionally, we describe the xApp implementation details in
Sec. VII.
4) Update BS configuration: Upon radar detection, the xApp
notifies the BS about the presence of radar over the E2
interface. Per FCC regulations, radar bands must be freed from
commercial use. Accordingly, BS appropriately cuts the 5G
communication in the radar operating channels.
•Offline Model training: In this work, the dataset is collected
and radar detection model is trained offline. We provide further
details for the dataset collected as well as the radar detection
approach in Sec. VI. After training, the model is deployed in
the near-RT RIC.

V. PRELIMINARY RESULTS - RADAR INTERFERENCE ON
CELLULAR UL COMMUNICATIONS
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Fig. 6: Trade-off between SINRsensing and SINRcomms

While the primary objective of SenseORAN is to detect
radar pulses overlapping with cellular signals, the former
can also introduce interference on the latter. Thus, it is
mutually beneficial to detect such occurrences and immedi-
ately shift cellular operation into a different band. In this
preliminary study, we measure this impact quantitatively. In
Fig. 6, we compare the trade-off between SINRsensing and
SINRcomms, defined in Sec IV-A. Notice that depending on
the task of interest, either radar or communication signals
can act as interference (Eq. 2 and Eq. 1). Hence, the relative
power levels between both signals define the accuracy of radar
detection (Sec. VIII) and the quality of the cellular uplink,
which we analyze in this section

Next, we set up a UL connection between a BS and a
UE (Fig. 7), with simulation parameters listed in Tab. I. We
simulate different modulation schemes and analyze the link
performance over different SINR levels. First, we observe the
SINRsensing range where radar is detectable, > 12 dB under
low traffic conditions, the link performance remains unaffected
for all modulation schemes. This is partially achieved because
radar signals are bursty, and multiple OFDM symbols remain
interference-free. Additionally, symbol redundancy and coding
rates can help recover from isolated low SINR symbols.
However, as we explain in Sec. VIII-B, the SINRsensing

levels in which radar is detectable depends on other factors,
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Fig. 7: Percentage of max. throughput achieved versus SINRcomms

(a) and SINRsensing (b). Simulation specifications are detailed in
Table. I.

Notation Description Value
Br Radar bandwidth 2MHz
T Radar period 15208 samples
Tb Pulse length 8 samples
fs Sampling rate 15.36MHz

NFFT Number of points in FFT 1024
NRB Number of resource blocks 51
BC Cellular waveform bandwidth 10MHz
CP Cyclic Prefix Normal

SCS Sub-carrier Spacing 15KHz
- Code Rate 193/1024

TABLE I: Notation Summary

such as spectrum occupancy and INR. Hence, seamless com-
munication will not achieved under all conditions in which
radar is detectable (single spectrogram detection might require
SINRsensing up to 18 dB).

Next, we observe how radar and communication signals play
the interference role, depending on the task (Eq. 2 and Eq. 1).
Hence, the ratio between both signals defines the accuracy
of radar detection (Sec. VIII) and the quality of the cellular
uplink.

VI. RADAR DETECTION

In this section, we describe the ML model in SenseORAN
for radar detection and the dataset used for training and
evaluating the performance of our model.

A. Dataset

We collect the first ever publicly accessible radar detection
dataset for research purpose, consisting of overlapping over-
the-air cellular and radar signals, under different noise levels
and diverse traffic conditions. We use a testbed of 3 Ettus
Research USRP X310 SDRs, with two nodes running a 4G
cellular network and a third one to collect I/Q samples in the
srsRAN’s FDD mode in order to bypass the need of precisely
capturing the uplink transmission moment (Fig. 8). All the
SDRs are connected to the same host machine, using 10Gbps
interfaces and Ethernet cables. We setup the 4G network by
running srsRAN [27], where one radio is configured as a UE
and the second one as the BS. FCC defines PAL channels
in the CBRS band to be 10MHz. Here, we comply with this
requirement by assigning 51 resource blocks, which requires a
sampling rate of 15.36MS/s. Additionally, we generate User
Datagram Protocol (UDP) traffic at different rates between the
UE and the BS. We setup an iperf3 server at the eNB and a
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Fig. 8: Data collection pipeline

client on the UE side. As explained in Sec. III-C, our sensing
mechanism uniquely relies on UL sub-frames. Hence, here
we only capture UL transmissions. We collect a total of 1800
10ms UL frames under 3 different traffic conditions, which
capture different spectrum occupancy levels.
•Spectrum occupancy: Considering that our system achieves
a maximum rate of ∼ 20Mbps, we generate UDP traffic with
data rates of 1Mbps, 10Mbps, and 30Mbps, meaning ∼ 5%,
50% and 100% spectrum occupancies, respectively. Notice that
traffic of 30Mbps ensures that all resource blocks are used
and guarantees full spectrum occupation. We depict examples
for these three different scenarios in Fig. 10. The impact of
cellular signals on radar detection (SINRsensing) is computed
following the expression in Eq. 1. Notice that this expression
only considers the average interfering power over a certain
band. However, interfering signals are unlikely to appear
in a homogeneous manner, and may occupy the spectrum
at different levels depending on the network traffic. Hence,
interfering signal power distribution can exhibit considerable
variance with the similar average power level (i.e. High power
bursty signals versus medium power constant transmissions).
How such behavior impacts radar detection, even for a fixed
SINR values, has not been investigated before.
•Interference to noise ratio (INR): Similar to the spectrum
occupancy ratio discussed above, spectrograms with the same
SINRsensing might will look very different depending on
their INRs levels. In particular, high INR environments (high
interference, low noise) allow the sidelobes of the radar pulses
to be detectable outside of the band, where the cellular signals
are present. As opposed to this, low INR translates into higher
noise levels, which masks the radar sidelobes below the noise
floor. The dataset was collected with an average INR of
30 dB. We extend the dataset by adding Gaussian noise, which
generates the 4 extra INR values of 10 dB, 15 dB, 20 dB, and
25 dB. We exemplify the effect of different levels of INR on
the spectrogram and radar visibility in Fig. 9.
•SINRsensing and radar parameters: We complete the dataset
generation by digitally adding standard compliant radar type-1
signals [9], with a pulse width of 8 samples, period of 15208
samples, and a sampling rate of 15.36MS/s. We randomly as-
sign the radar center frequency for every different spectrogram,
from the range [−BC+Br

2 , BC−Br

2 ] to ensure overlapping be-
tween the radar and cellular signals. We generate spectrograms
with the FFT size of 1024 and no overlap, and with SINRs
that range from 10 dB to 25 dB for each different UDP traffic
and INR value. Given the hardware requirements for FCC-
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compliant power levels, we neglect absolute power values
and uniquely focus on relative power levels, by generating
a diverse SINR dataset. Notice that SINR measures the
relative power level between radar and interferer, which is the
only representative to analyze the radar detection performance.
Finally, as described in Sec. IV-B, each UL subframe will
capture a radar pulse at different time instants. Hence, we
generate a random delayed radar pulse for each captured UL
subframe.

B. Approach

Our goal is to i) detect whether there is a radar signal
present in the spectrum of interest and ii) accurately predict
what frequency band the radar is operating on. To do so,
we use a YOLO architecture ('you only look once'), whose
speed and computational efficiency makes it one of the most
popular state-of-the-art object detection algorithms [7]. In
particular, similar to the work in [18], we select YOLO
version 3 (YOLOv3) as it has been already proven in similar
signal detection and classification problems. YOLO predicts
bounding boxes for each detected object, which in this work,
implies locating the radar signals in the time and frequency
space of a spectrogram (see Fig. 11). While the spectrogram
dataset contains both cellular and radar signals, we focus
only on detecting and localizing radar transmissions. Since all
4G/5G transmissions occur with synchronization between the
BS and the UEs, which frequency band and what time slots
will be occupied is part of information already available within
the network. Thus, our model solely focuses on detecting radar
signals.

VII. RADAR DETECTION XAPP DESIGN AND
IMPLEMENTATION IN SENSEORAN

In this section, we first provide an overview for the experi-
mental setup and design of the O-RAN compliant testbed for
the radar detection xApp in the near-RT RIC. Then, we detail
the end-to-end implementation steps within the near-RT RIC.

A. Experimental Setup

We leverage Open AI Cellular (OAIC) platform [28], to
build an LTE O-RAN system, which uses open-cellular soft-
ware and software-defined radios. Specifically, the prototyped
O-RAN testbed comprises of an EPC core, one LTE base
station, and a varying number of UEs to establish the near-
RT closed control loop. Particularly, the near-RT RIC uses
E2 interface to interact with RAN. A custom E2 service
model (E2SM-SS) is developed to send spectrogram reports
and enable control of the RAN by the xApp. The near-RT RIC
is deployed on a virtualized workstation based on an AMD
EPYC processor, utilizing 16 CPU cores, 16 GB of RAM,
and ∼80 GB of storage capacity. The base station and UEs
are implemented in the same virtual machine and communicate
to each other through ZeroMQ.

B. Implementation Workflow in the near-RT RIC

Here, we describe how the connection between the gNB and
the near-RT is set up. For ease of implementation, we chose an
E2-like interface based on the SCTP protocol, which functions
similarly to the E2 interface and allows us to carry out control
and report messages. In the E2 standard, RAN Functions de-
fine specifications and behavior of a service facilitated through
the E2 interface, and are communicated by the RAN to inform
the RIC of its supported capabilities. In the E2-like interface,
no RAN Functions are explicitly communicated by the RAN,
which initially simplifies the connection setup. There is no
subscription process and no built-in differentiation of messages
between E2-like nodes. Fig. 12 illustrates the workflow of our
implementation, and we summarize the required steps to setup
the E2-like connection below:
Step-1) The xApp is deployed, it uses the E2-like interface to
accept connections from outside the RIC.
Step-2) The RAN finds the xApp and connects through the
SCTP interface, establishing an E2-like connection.
Step-3) The xApp sends an acknowledgement message to the
RAN which functions as a request to send E2-Like Indication
Messages.
Step-4) Upon receiving the acknowledgement message from
the xApp, the RAN starts collecting I/Q samples captured by
the RF/PHY layer buffers for a specified duration. The I/Q data
is reported to the xApp as an E2-Like Indication Message.
Step-5) The xApp receives the I/Q data and converts it into
a spectrogram. In our particular implementation, spectrograms
are created at the xApp itself. However, SenseORAN does not
require I/Q samples to leave the BS, and this alternative was
solely chosen to ease the implementation efforts. The spectro-
gram is fed as input to the Spectrum Classifier, which hosts
the YOLOv3 model for radar detection. The predictions from
our YOLOv3 model initiate the Policy Controller module.
Step-6) Then, the Policy Controller makes decisions based on
the feedback from the YOLOv3 and issues a E2-Like Control
Message. If the radar is detected in the band of interest, the
control message dictates that all cellular operations should be
terminated, as per FCC requirement in the CBRS band [29],
which we comply by setting the transmitter power to near 0W
in our testbed.
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Fig. 10: Spectrograms with different spectrum occupancy rates of 5% (a), 50% (b) and 100% (c).
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For our purposes, we implement a E2-like service model
on this interface that, unlike E2, does not rely on ASN.1 for
encoding and decoding of data. E2-Like Indication Messages
from the RAN are triggered by an indication request from the
xApp, unlike E2 where an event trigger may occur due to
internal events such as a timer. E2-Like Control Messages are
not required to be validated at the RAN and the success/failure
is not reported back to the xApp. In order to make this system
an O-RAN-compliant solution, implementing an E2 service
model is required. However, our implementation works as a
research proof of concept, and is conceptually the same as if
a fully O-RAN compliant solution was used.

While the RU may be connected to zero or more UEs, the
E2SM-SS service model collects I/Q samples according to the
frame structure previously defined in IV-B.

VIII. PERFORMANCE EVALUATION

A. Time Analysis

We first study the time required to run the radar detection
task when implemented within an O-RAN system. First, we
identify the two main contributors to the time overhead: i)

near RT-RIC

xApp

Spectrogram

UE

E2 interface

Radar detection
BS

I/Q samples
radar

YOLO

trigger1

23
4

5

ESC

Fig. 13: Data flow and calculation steps for radar detection in an
O-RAN compliant cellular network that operates in the CBRS band.

collecting I/Q samples in the time slots reserved for uplink
subframes, and ii) sending the generated spectrogram image
to the near-RT RIC over the E2 interface. We show where
these two processes are executed in Fig. 13, and we discuss
them in the remainder of this subsection.

1) Time for I/Q Sample Collection (TIQ): In order to not
interrupt the regular communication operation of the cellular
network, we rely on I/Q samples collected during uplink time
slots. Notice that the BS is already in receive mode during
the period reserved for UL sub-frames. Hence, SenseORAN
simply reuses I/Q samples to generate spectrograms that
are otherwise being processed through the regular receiver
pipeline. However, CBRS only supports TDD mode, which
implies that the sensing task will be dependent on the frame
configuration, as described in Sec. IV-B. The BS captures
λ/NCi

UL frames, to complete 1 full frame of uplink I/Q data,
where λ = 10ms (a frame duration in TDD) and NCi

UL denotes
the number of uplink subframes for the frame configuration
Ci. We express the total time needed for I/Q sample collection
as:

TIQ = τspec ×
λ

NCi

UL

, (3)

where τspec is the time-axis duration (in s) of spectrograms
created within SenseORAN. How TIQ is affected by different
TDD configurations is shown in Fig. 14, in which λ = 10ms
(default frame length in TDD, see Fig. 4). We also choose
τspec = 10ms, because we want to make the I/Q sample
collection small enough to reliably detect radars and keep it
consistent with the complete TDD frame duration.
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Fig. 14: The effect of TDD subframe configuration in the time it
takes to collect enough I/Q samples at a BS for radar detection. For
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xApp in the near-RT RIC (1 s).

2) Time in the O-RAN Components (TORAN ): In order to
have a data flow running on the E2 interface, the end points
of the interface must be connected, i.e., near RT-RIC and
RAN (also called E2 nodes). E2 nodes and near RT-RIC first
establish an SCTP connection, after which E2 nodes send an
E2 setup request and if the near RT-RIC successfully delivers
acknowledgement, then the E2 interface is setup. Since this
is only required to establish a connection between the RAN
and near RT-RIC, this is a one-time cost, which we denote as
TE2−setup.

After the RAN to near RT-RIC connection is established,
the E2 interface is activated and the xApp is ready to function
within the O-RAN network. The data flow from RAN to near-
RT can occur either periodically or it might start through
a trigger event by E2 nodes, whereas the data flow in the
opposite direction can be initiated autonomously by the near
RT-RIC or by a trigger event. We envision that the radar
detection starts with a trigger from the near RT-RIC, as shown
in Fig. 13. We denote the aforementioned data transmission
times as TRAN→RIC and TRIC→RAN , subtexts indicating
the directions of data flow. In the RAN → RIC direction,
spectrograms are sent, whereas in the RIC → RAN direction
small radar detection indicators are sent. Thus, assuming
that the cables in both directions in the E2 interface have
identical capacity, TRAN→RIC ≫ TRIC→RAN , making the
latter practically negligible. Total data to send for a single
spectrogram is ζ = fs×σIQ×τspec, where fs is the sampling
rate (given in Tab. I), σIQ is the per sample size of the I/Q data
with the value of 32 bits (16 bits for real and imaginary parts
each), making ζ = 4.9Mb. Thus, the time it takes to deliver
this data over the E2 interface is TE2 = TRAN→RIC = ζ

rE2
,

where rE2 is the data rate (in Mbps) over the E2 interface.
Additionally, computations at xApps take some time. In

SenseORAN, spectrograms are provided to the xApp, which
detects radar pulses by applying the YOLOv3 algorithm on
the spectrograms. We denote this total time as TRIC , which
depends on both the model complexity and ζ.

TORAN = TE2−setup + TE2 + TRIC (4)

3) Complete Time for Radar Detection (Trd): All in all, the
total time it takes for an O-RAN compliant base-station that
operates in the CBRS band is formulated as:

Trd = TIQ + TORAN , (5)

where TIQ and TORAN are provided in Eq. 3 and 4,
respectively.

B. Radar Detection

In this subsection, we evaluate the performance of the radar
detection approach in SenseORAN, described in Sec. VI. First,
we define the following metrics:

• Recall: The ratio of true positives among all true radar
labels. Notice that in radar detection, this metric is the
most relevant, given that radar signals have the highest
priority and the FCC mandates a radar detection of >
99% of radar pulses should be detected for an SINR of
20 dB.

• Average Intersection-over-Union (IoU): IoU for each de-
tected radar is computed as the area of overlap of true
and predicted bounding boxes, divided by the area of
their union. Average IoU is calculated by averaging IoU
for detected radars over the whole test set. IoU is used
as a quantitative metric to measure how well the model
was able to locate radar.

• Radar center frequency estimation error, defined as the
absolute difference between the predicted (fc) and the
ground truth (fc′) center frequencies (|fc− fc′|).

In Fig. 15, we evaluate the performance of our model in
terms of recall, average Intersection-over-Union (IoU), and
radar center frequency estimation error for different INR
and spectrum occupancy values. We observe that higher
SINRsensing improves all 3 metrics, as expected. However,
SINRsensing is not the only parameter that impacts the radar
detection performance. While SINRsensing models the radar
level in comparison to the interference and noise, the relative
power level between these two (INR) (high interference and
low noise floor), is also relevant. In Figs. 15a-15c, we analyze
show how all metrics improve with higher INR values, even
when the measured SINRsensing is the same. As explained
in Sec. VI-A, even if the radar bandwidth is limited to 2MHz,
the sidelobe power dissipates beyond its allocated band. While
this generates undesired interference, it can facilitate radar de-
tection when the sidelobe power is above the noise floor. Then,
in scenarios with high INR, our approach can easily detect
and localize radar in a spectrogram, which translates into better
recall, IoU and center frequency estimation. Next, we evaluate
the impact of different spectrum occupancy patterns generated
by different traffic levels. While noise is constant over time,
interference will depend on many factors. However, notice
that SINRsensing (Eq. 1) averages the interference levels for
the time/frequency of interest. In Figs. 15d-15f, we show the
lower the spectrum occupancy, the higher the radar detection
performance. When the average level of interference and noise
is the same, lower traffic/spectrum occupancy facilitates that
certain radar pulses might fall into an interference-free slot
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Fig. 15: Recall vs. SINRsensing for different INR (a) and spectrum occupancies (d). Average IoU vs. SINRsensing for different INR (c) and
spectrum occupancies (e). fc error estimate for different INR (c) and spectrum occupancies (f).
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Fig. 16: Recall vs. SINRsensing while applying majority voting on predictions with different number of spectrograms. We compare spectrum
occupancies of 5% (a), 50% (b), and 100% (c).

while completely overlapping with an ongoing transmission.
Our results show that this scenario, where some radar pulses
undergo low interference while others undergo high interfer-
ence, is preferred over the case in which all pulses experience
the same medium level of interference.

C. Radar Detection Using Multiple Spectrograms

The previous results always assume radar is detected using a
single spectrogram. However, SenseORAN supports collecting
and using multiple spectrograms to improve robustness and

achieve detection at lower SINRsensing . We evaluate the
radar detection performance (recall) in Fig. 16 under different
traffic conditions. All results are averaged across all INR values
present in the dataset. When multiple spectrograms are used,
each spectrogram is used to obtain an independent decision,
and then all results are combined using a majority voting,
which takes a final decision (radar vs no radar) based on what
the majority decided. We observe how increasing the number
of spectrograms improves the detection performance for all
spectrum occupancy patterns, by reducing the SINRsensing at
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Fig. 17: Experimental time analysis in SenseORAN. The breakdown of the total round trip time (RTT), which is 925ms (a), RTT vs. number
of spectrograms (b), and RTT vs. number of base stations (c).

which the FCC required 99% detection accuracy is necessary.
For instance, we achieve 100% accuracy at 12 dB, 13 dB, and
16 dB SINRsensing . Notice that we overwhelmingly improve
over the FCC thresholds in the CBRS band, which mandate
at least 99% detection accuracy at 20 dB SINRsensing .

D. SenseORAN System Round Trip Time

Fig. 17a presents the breakdown of overall round trip time
(RTT) incurred in SenseORAN. Noticeably, the YOLOv3
model inference is the bottleneck and accounts for 79.8%
of the total latency of 866ms (< 1 s), which represents
85.5% improvement over the 60 s limit that is mandated by
the state-of-the-art CBRS SAS system. The next two most
time consuming steps take place at the BS for collecting I/Q
samples over the air (TIQ) and creating spectrograms from the
I/Q samples, which respectively account for nearly 11.5% and
7.4% of total RTT.

Figs. 17b and 17c showcase the impact of varying number
of spectrograms and number of BS over the RTT time of
SenseORAN, respectively. The results are expected, as the
overall effect is the overhead increase in collecting higher
number of I/Q samples (multiple spectrograms from a given
BS in Fig. 17b) or multiple BSs (one spectrogram per BS
in Fig. 17c), and subsequent steps of I/Q to spectrogram
conversion and model inference time. To evaluate the multiple
BS configuration in Fig. 17c, we use the measurements for the
multi-spectrogram configuration in Fig. 17b and assume that
I/Q data collection happens in parallel. Finally, the E2 latency
is computed accounting for the traffic overhead of supporting
multiple base stations.

IX. CONCLUSIONS

We propose a novel architectural transformation within the
classical cellular systems enabled by O-RAN that allows a BS
to act as a spectrum sensor. In the CBRS band, SenseORAN i)
eliminates the need for dedicated radar detection infrastructure,
and ii) reduces the detection and system response times in
comparison to the legacy CBRS-SAS approach. In addition
to the reduction in cost and time, SenseORAN potentially

expands the radar sensing area, given the nation-wide coverage
of deployed cellular infrastructure. We demonstrate radar
detection feasibility under various levels of cellular signal in-
terference. We also analyze the practical delays and overheads
using a real O-RAN system implementation with SDRs. Our
results conclude a radar detection recall of ∼ 98% for SINRs
≥ 18 dB under all INR and spectrum occupancy scenarios,
and achieve a 100% radar detection recall for SINRs ≥ 12 dB
and under low traffic conditions when 7 spectrograms are
combined using majority voting. Finally, we implement our
radar detection as an xApp, where we show the feasibility of
SenseORAN with end-to-end response times of < 1 s, being
compliant with the near-RT RIC O-RAN specifications and
much lower than the permissible radar reporting time of 60 s
that is mandated by the FCC.

X. FUTURE WORK

SenseORAN is the first step towards using cellular systems
for both communications and sensing tasks. Here, we list
the challenges and research opportunities that we plan on
addressing in further development of SenseORAN:

• Hardware accelerated models: The radar detection model
uses a single CPU, which we show is sufficient to
achieve system response time of 1 s. In future work,
we will explore alternative hardware-optimized NN im-
plementations to speed up the radar detection algorithm
and achieve even faster end-to-end response times. For
example, Wang et al. [30] achieves object detection run
times of < 10ms, by improving the ever-evolving YOLO
algorithm.

• Parallelization in RIC: O-RAN RICs are expected to have
multiple computing nodes tailored to run AI applications.
Together with more efficient NN implementations, we
will explore parallelization techniques that will enable
running inference on multiple spectrograms simultane-
ously, given the available computation resources on de-
mand.

• Intelligent reconfiguration: Current CBRS systems, as
well as our implementation, simply forced a cellular



operator to stop transmissions after radar is detected in
a given band. In future work, we will explore more
intelligent solutions that exploit spectrum resources more
efficiently, while guaranteeing no impact on the radar
functionality.

• Extension to other sensing applications: The CBRS band
coexistence problem was chosen to showcase an appli-
cation, where running a sensing task as part of an xApp
could be beneficial. However, we envision this concept
can be extended to a wide range of problems including
mobile radar in the 3.1-3.5GHz band. We will explore
such alternative sensing applications, while considering
real system and O-RAN implementation limitations.
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