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Abstract—This paper adopts a systems approach to study how millimeter wave (mmWave) radio transmitters on UAVs provide high
throughput links under typical hovering conditions. With Terragraph channel sounder units, we experimentally study the impact of signal
fluctuations and sub-optimal beam selection on a testbed involving DJI M600 UAVs. From the hovering-related insights and the
measured antenna radiation patterns, we develop and validate the first stochastic UAV-to-Ground mmWave channel model with UAVs
as transmitters. Our UAV-centric analytical model complements the classical fading with additional losses expected in the mmWave
channel during hovering, considering 3-D antenna configuration and beamforming training parameters. We specifically consider lateral
displacement, roll, pitch, and yaw, whose magnitude vary depending on the availability of specialized hardware such as real-time
kinematic GPS. We then leverage this model to mitigate the hovering impact on the UAV-to-Ground link by selecting a near-to-optimum
pair of beams. Importantly, our work does not change the wireless standard nor require any cross-layer information, making it
compatible with current mmWave devices. Results demonstrate that our channel model drops estimation error to ≈ 0.2%, i.e., 18x
lower, and improves the average PHY bit-rate by ≈ 10% when compared to existing state-of-the-art channel models and beamforming
methods for UAVs.
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1 INTRODUCTION

The acute spectrum scarcity in the desirable sub-6GHz
frequency band has spurred interest in mmWave bands,
where substantial amount of untapped channel resources
exist [1]. While extensive investigation has been conducted
on the particularities of these higher frequencies, the Federal
Communications Commission (FCC) is creating new oppor-
tunities for the next generation of WiFi in the above-95 GHz
band. This has placed mmWave frequencies as a potential
candidate to provide high throughput service through the
next generation WiFi and 5G standards [2]. Furthermore,
from the usage point of view, wireless capacity demand
exhibits high spikes of short duration at locations where
existing infrastructure may not be sufficient. This makes
permanent deployments too costly, forcing to find flexible
solutions to cover temporary additional needs. Thus, (i)
obtaining a fundamental understanding of the practical
constraints of operating in the mmWave bands, as well as
(ii) addressing the limitations of static transceiver infrastruc-
ture, are salient to realizing a viable mmWave based system
[3]. As a possible solution, we envisage a network archi-
tecture of UAVs mounted with digitally steerable mmWave
antennas, serving as aero mobile base stations, that can be
flexibly positioned in time and space.
• Motivation for mmWave-enabled UAV deployment:
Given the high capital investment in installing mmWave

equipment, static urban deployment must carefully consider
cost-benefit tradeoffs, especially when traffic spikes occur at
different locations and times. For example, train/bus sta-
tions, sporting venues, coffee shops and downtown offices
exhibit short-term capacity shortfalls that coincide with hu-
man activity patterns [4]. To address these scenarios, UAVs
with on-board mmWave radios can be continuously moved
to serve pockets of users [5], [6] [7], [8]. In the absence of
optical fiber, UAVs rely on point to point mmWave backhaul
links to the nearest fixed tower, while serving users on
ground (ground nodes) with the desired mmWave cellular
or WiFi standard. For our experimental mmWave-enabled
UAV channel modeling and beam selection optimization,
we have chosen COTS 802.11ad hardware, though our work
is applicable to any other mmWave capable WiFi/cellular
standard of interest.
• Challenges in mmWave-enabled UAVs: Current
mmWave standards use beamforming to create constructive
signal addition at the receiver [9], [10]. While beamforming
helps combat additional losses due to higher sensitivity
to rain/gas absorption and the use of smaller antenna
apertures, compared to lower frequencies [11] [12], nar-
rowly directing energy may cause frequent antenna beam
misalignments due to the continuous hovering-related UAV
displacements. In Fig. 1, we visualize the implications of the
term hovering as the total sum of various motion artifacts, in-
cluding translational motion along three axes, and rotational
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Fig. 1: (a) UAV movement with lateral displacement (shown
only for y axis), (b) yaw (along x-y plane), (c) roll (around x
axis), and (d) pitch (nose moves upwards, leaving x-y plane)

motion - yaw, roll, and pitch. These types of motion during
hovering are caused by the in-built GPS module localization
inaccuracy, and follow a Gaussian distribution [13] that can
extend up to ±1.5< along any single axis in the horizontal
plane and ±0.5< along the vertical axis within the 3-D space
[14], being even larger for less stable UAVs models. In ad-
dition to beam misalignment, UAV motion during hovering
may lead to an undesirable situation in which the pair of
beams chosen by conventional beam selection techniques
presents sub-optimal performance over time. We demon-
strate this problem in Fig. 2, with actual measured data of
the unpredictable UAV displacements. As shown in Fig. 2
(left), when the transmitter and receiver radios are static,
the pair of beams selected after beam-sweeping is optimum,
resulting in a perfect match over time. However, with hover-
ing UAVs as mmWave transmitters, in Fig. 2 (right), the UAV
location fluctuates. As a result of this, the UAV does not
statically stay at its initial location, but rather moves from
one location to another within the hovering displacement
range. Moreover, from our experimental observations, there
is no guarantee that when beam-sweeping is performed,
the UAV location (Location 1 in Fig. 2), corresponds to the
center of the hovering Gaussian distribution (Location 2 in
Fig. 2), where the UAV is most likely to be over time. In
this case, the selected pair of beams, which was optimum
in Location 1, turns out to be sub-optimal in average as the
UAV location changes and beams become misaligned. The
combination of beam misalignment and sub-optimal beam
selection eventually lead to received power fluctuations and
decreased average performance over time, highly degrading
the communication link.
• Summary of Contributions:

Current UAV-to-Ground mmWave channel models are
idealistic and limited in their abilities to capture practical
effects caused by the UAV airframe and its hovering-related
motion. A key unsolved challenge that we tackle in this pa-
per is to design and experimentally validate a fine-grained
mmWave channel model that complements the classical
fading, by specifically taking into account – (i) the UAV
airframe and its effect on the mmWave signal propagation
and (ii) fading caused by the unique UAV movement pat-
terns shown in Fig. 1. For the latter, based on experimental
observations, we prove that besides expected misalignment
loss, hovering motion also causes the sub-optimal beam se-
lection problem discussed in Fig. 2. Non-intuitively, guided
by our channel model, our work also demonstrates that
choosing specific sub-optimal beams after beam-sweeping,

Fig. 2: Sub-optimal beam selection under hovering

improves the average performance of the UAV mmWave-
link over time, compared to the existing standard. Towards
this aim, we design an algorithm that optimizes the beam
selection for mmWave-enabled UAV transmitters, such that
the average SNR at the receiver maximizes over time. To
summarize, our work adopts a rigorous systems-approach,
by making the following contributions:
(1) We identify and empirically characterize the significant
effect of the UAV airframe and the sub-optimal beam selec-
tion problem in existing standards using 802.11ad complaint
Terragraph radios, in Section 3. In addition, we quantita-
tively relate these two effects, as well as beam misalignment
caused by hovering with, (i) additional fading and (ii) result-
ing power fluctuations over time, by comparing collected
data from static and UAV-to-Ground links.
(2) We build and experimentally validate the first stochas-
tic analytical UAV-to-Ground channel model that takes a
systems-approach to estimate additional fading in mmWave
links, complementing existing models, in Section 4. In par-
ticular, our model includes the effects of UAV translational
motion along the three axes, as well as yaw, pitch, and
roll characterized from experimental data. Following the
acceptance of the paper, the hovering raw data trace-files
will be released to the community. Our model also considers
the dependence on 3-D radiation patterns of the highly di-
rectional antennas, measured under actual flying conditions
and potential vibrations. Moreover, and for the first time, we
include the effect of a potential sub-optimum beam selection
in the fading estimation. Lastly, we tailor our model to
different deployment parameters, hovering conditions, and
beamforming training configurations, such as the beam-
sweeping angular resolution and maximum angular range.
(3) In order to overcome the problem of sub-optimal beam
selection, we propose a standards-compliant approach that
selects a near-to-optimum pair of beams for given hovering
conditions and antenna radiation patterns, in Section 5.
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Moreover, our approach utilizes hovering data collected in-
situ during actual flight, without using a dedicated time-slot
for data collection. We compare our algorithm performance
with the standard-based approach during UAV experiments
in Section 6, where we also validate our channel model
using measured data during flight and show its superior
accuracy compared to prevalent idealistic models.

2 RELATED WORK

• Channel Modelling Efforts: There has been a significant
effort to understand and characterize mmWave channels
in different scenarios over the last few years, including
indoor [15], [16], urban [17] and rural environments [18].
The work in [19] presents an overview of channel mod-
eling efforts from several international groups, who pro-
pose models for Line-of-Sight (LOS) probability, path loss
and building penetration through extensive research and
measurement campaigns. Specific to mobility, for Vehicle-
to-Infrastructure (V2I) communications, the authors in [17]
characterize the channel for an urban environment through
simulations in the 28 GHz frequency band. For Vehicle-
to-Vehicle (V2V) communications, an empirical character-
ization for large and small scale fading is performed in
[20], whereas [21] analyzes the effect of small vibrations on
the doppler spread. However, none of these works involve
UAVs as part of the communication system.

For UAV communications, the works in [22], [23], [24],
[25] survey and discuss channel model involving UAVs for
the Air-to-Ground link. [22] presents a measurement cam-
paign for both narrow and wide bandwidths, performed in
a suburban environment; while [23] proposes a statistical
model based on ultrawideband channel sounding. More
recently, the authors in [26] and [27] characterize the UAV-
to-ground channel in LOS and NLOS urban environments
through ray tracing simulations, whereas in [28], the authors
propose and validate through empirical analysis their pro-
posed Air-to-Ground channel model, without including the
unique UAV structural characteristics and hovering motion
patterns. However, all these works are developed for the
sub-6GHz band, and thus, their outcomes cannot be gener-
alized for higher mmWave frequencies. In contrast, in this
work we provide a model to estimate UAV-related fading,
applied to a 60 GHz mmWave link that can be generalized
to other frequency bands. Although there exist works on
channel modeling for UAV-based mmWave links, they lack
experimental validation and most of them do not include
the UAV dynamics into the model. For instance in [29],
the authors use ray-tracing simulations to model the air-
to-ground channels in 28 GHz and 60 GHz, whereas in [30],
a stochastic geometry based 3-D model that considers the
directionality and the random heights of transmitters and
receivers is proposed. We instead include the UAV motion
patterns modelled from collected data during actual flights,
and experimentally validate our approach. The closest work
found in the literature is presented in [31]. Here, the authors
consider additional losses due to the UAV hovering motion,
though their model lacks a straightforward relationship
with UAV flying parameters and beamforming training
configuration. Moreover, they assume an ideal antenna ra-
diation pattern, limiting their analysis to the main lobe.

Lastly, their proposed model is validated with simulations;
thus, lacking experimental validation. We show how some
of these assumptions may lead to inaccuracies in the theo-
retical model when compared to actual experimental data.
• beam selection Algorithms: There exist several works
aiming to optimize the process of beam selection. In [32]
the authors find the optimal steering direction on IEEE
802.11ad compatible devices, accounting for measured ra-
diation patterns and sweeping only through a subset of
probing sectors. InferBeam [33], proposes to model the
environment as a 3D grid and use Conditional Random
Field to map every discrete point to an optimal antenna
sector. In [34] the authors track the channel dynamics to
find the best beam under mobility. 3D scene reconstruction
has been proposed in [35] from surrounding images of a
given user, which is used to train a deep neural network,
to predict the optimal mmWave transmit and receive beam
indices. The authors in [36] estimate the power delay pro-
file of a sub-6 GHz channel, as inputs for a deep neural
network to predict the optimal mmwave beam, bypassing
the traditional beam sweeping process. Whereas in [37], the
authors propose to learn the optimal beam pair index by
exploiting the locations and types of the receiver vehicle and
its neighboring vehicles (situational awareness), leveraging
machine learning classification and past beam training data.
However, none of the existing works identify and address
the sub-optimal beam selection problem, in particular to
hovering UAVs, which we tackle here. To the best of our
knowledge, we are the first to provide a robust channel
model for mmWave-enabled UAVs that accurately estimates
additional fading induced as an effect of realistic antenna
radiation patterns, displacement due to UAV hovering, and
sub-optimal beam selection. Also, we provide a near-to-
optimum beam selection which enhances the average per-
formance under hovering conditions.

3 STUDY OF UAV HOVERING IN MMWAVE LINKS

We first present our hardware selection in Section 3.1. Then,
we experimentally characterize the effect of the UAV air-
frame and the UAV motion during hovering illustrated in
Fig. 1, on additional fading compared to static links, in
Sections 3.2 and 3.3. Finally, based on our empirical results,
we motivate the need for a tailored UAV-to-Ground channel
model and improved beam selection algorithm for hovering
scenarios, in Section 3.4.

3.1 Hardware Selection
1) MmWave Sounders. We use Terragraph (TG) channel

sounders, a customized pair of nodes from Facebook [38].
They are designed for the channel modeling of 60GHz
links, with capability to measure directional path loss,
Signal-to-Noise Ratio (SNR) at the receiver and physical
(PHY)-bitrate, among other parameters. Their maximum
Effective Isotropic Radiated Power (EIRP) is 45 dBm.
Each TG sounder antenna consists of a phased array
composed of 36×8 radiating elements. All radiating ele-
ments in a given column are connected to the same phase
shifter, and thus, steering is not supported in the eleva-
tion plane (i). In the azimuth plane (\), the steering an-
gular range is [−45◦, 45◦]. Azimuth steering is performed
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Fig. 3: System diagram for the experimental setup

using pre-calibrated antenna weight vectors (AWVs).
However, in the existing version of the TG sounders,
AWVs cannot be customized, and beam steering is in-
stead achieved using a set of 64 predefined beams. Each
predefined beam is a steered version of a uniformly
illuminated array. The antenna 3-dB beamwidth (\33�)
can be set to 2.8°, 8.5°, and 105°. The TG sounders
implement the PHY layer of 802.11ad protocol, consisting
of 58.32, 60.48 and 62.64GHz frequency bands and MCS
of 1 - 12. In 802.11ad, the communicating nodes agree
on the optimal pair of transmit and receive beams to
maximize signal quality and throughput. This process,
referred to as beamforming training, takes advantage of
the discretized antenna azimuth that reduces the search
space of possible antenna array configurations. In the
standard, after a first sector matching, a second beam-
sweeping stage allows further refinement within the se-
lected sectors. TG sounders skip the first sector matching
of the 802.11ad beam selection process, and only perform
the refinement stage among the set of predefined beams.

2) UAV model. Given the total weight (12 Kg) including
external modules – the channel sounder and positioning
system –, the DJI-M600 is the only apt choice for us, as it
can carry weights up to 15 Kg. The UAV is equipped with
an in-built GPS module to determine its location and
take required actions to reach its targeted coordinates.
However, classical in-built GPS module introduces an
error of ≈ 0.7 m and up to 1.5 m in the measured location.
Thus, when a UAV is programmed to hover at certain
targeted coordinates, it experiences a continuous motion
around them, as it relies on inaccurate GPS signals for
localization. Given this, we also equip the UAV with
an RTK-GPS [39], mounted on the M600 as an add-on
module and provides a near-stable UAV location mea-
surement with ≈ 0.1 m variation. However, this enhanced
positioning accuracy effectively doubles the cost of the
M600 setup [39] [40] and hence, our experimental study
involves both configurations. The UAV is provided with
an Inertial Measurement Unit (IMU) for rotational data
collection. An on-board NVIDIA Jetson TX2 compute
module stores all sensor data during the experiment.

3) Localization measurement system. Our proposed beam se-
lection algorithm requires to log the UAV location during
flight with high accuracy. Given the high cost of the
M600 RTK-GPS add-on module, we do not assume its
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Fig. 4: Antenna radiation pattern under flying conditions

availability. Instead, we use a low-cost RTK-GPS system,
EMLID Reach M+, which also provides cm-level localiza-
tion accuracy. In our setup, this system is only used for
data collection and cannot be directly integrated with the
UAV navigation system to modify the UAV flight pattern.
Thus, three different localization system are mentioned
in this work: GPS or RTK-GPS used for navigation and
the low-cost RTK-GPS EMLID Reach M+ with the only
purpose of data collection.
In Fig. 3, we present a system diagram showing the inter-

connection between the aforementioned hardware modules.

3.2 Effect of UAV Airframe on the Antenna Radiation
Pattern

It is well-known that mmWave signals present reflective
properties to certain types of material, such as metal and
hard plastic. Moreover, mmWave signal propagation has
been proven to be sensitive to potential vibrations induced
by wind bursts [41] or by a lack of perfect synchronization
in UAV quad-rotor systems [42]. While the aforementioned
reflecting materials are commonly used for UAV manufac-
turing, vibrations can cause UAV instability and alter the
antenna frequency response. For this reason, and given the
proximity of the mmWave sounder to the UAV underside
(see Fig. 6), we were motivated to study how the UAV
airframe and potential vibrations affect signal propagation.
In order to analyse this phenomena, we compare the TG
sounder antenna radiation pattern measured in a RF ane-
choic chamber for two different setups – (i) with the trans-
mitter on a tripod and thus, free of surrounding reflecting
structure, and (ii) with the transmitter attached to the under-
side of a M600 UAV using 3-D printed hardware, as we
illustrate in Fig. 6. For the latter setup, the UAV rotors were
turned on, in order to account for vibrations and emulate
flying conditions as closely as possible. We denote these se-
tups as static and aerial, respectively. The receiver remained
on a tripod in both setups, at a height of 1.5 meters above
the ground, 6 meters away from the transmitter. For each
setup, we characterized the radiation pattern for the central
beam at the transmitter, according to the predefined beams
mentioned in Section 3.1. To this extent, we made both TG
sounders perfectly face each other, and fixed their central
beams for transmission and reception. Then, we rotated the
transmitter sounder by angular steps of 1°, so that the beams
were steered away from each other at an azimuth angle \ ∈ Z
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in the range [−30, 30] ( \ = 0°, being the perfect alignment).
For each position, we logged the link path loss and calcu-
lated the electric field from � (3�/<) = 10;>6(

√
/0%3), where

/0 is the free space impedance equal to 120c, and %3 is the
power density, computed as %3 =

6%A
4c32 , with 6 the antenna

gain, 3 the distance between transmitter and receiver and %A
the received power calculated as the difference between the
EIRP set for transmission and the measured path loss. For
validation, we contrasted our characterization for the first
setup (tripod case) with TG documentation.
In Fig. 4, we present the measured radiation patterns for
both setups, and observe the effect the UAV airframe has
on its shape. For reference, we additionally include the ideal
radiation pattern calculated from antenna array synthesis,
for the same beamwidth \33� of 2.8° as for the experimental
characterization. From the comparison between the static
and aerial radiation patterns, we observe that the UAV
hardware and its in-motion rotors cause additional fading
!� 5 A of 9.5 dB, as they perturb the mmWave electric field
in the near-field region. Specific values for !� 5 A depend on
the amount of power reflected and scattered on the UAV
airframe, given by (i) the UAV airframe shape and material,
(ii) the antenna radiation pattern, and (iii) the sounder
assembly on the UAV. For our case, since TG sounders do
not perform elevation steering, significant amount of power
is reflected on the UAV underside, causing large additional
fading. Under this observation, theoretical models need
to consider potential hardware-mounting related fading in
practical deployments.

3.3 Effect of UAV Hovering on the Link Performance

In this section, we aim to experimentally quantify the link
performance degradation caused by UAV hovering-related
motion, and illustrate its dependency with different deploy-
ment and system configuration parameters. To this extent,
we first describe in Section 3.3.1 the two direct effects caused
by hovering - beam misalignment and potential sub-optimal
beam selection -, already introduced in Section 1. Then, in
Section 3.3.2, we quantify through experiments how these
two phenomena result in power fluctuations and additional
fading when compared to static deployments.

3.3.1 Understanding Hovering-Related Effects

First, we illustrate the origin of power fluctuations due to
beam misalignment by referring to Fig. 5a. Initially, right af-
ter the beam-sweeping procedure, transmitter, and receiver
beams are perfectly aligned. However, as the transmitter
UAV suffers from hovering and experiences displacement
from its initial location, its beam becomes misaligned with
the receiver’s. This causes additional loss !"8B0; compared
to a static setup, as the antenna gains drop. Since the
displacement is due to hovering, that is of unpredictable na-
ture, the antenna gains, and consequently !"8B0; , randomly
fluctuate over time. Moreover, the fluctuations magnitude
is highly dependent on the antenna radiation patterns and
hovering conditions according to Fig. 5a, and increases as
the distance between transmitter and receiver is reduced.
This highlights the importance of carefully considering
hardware features for loss estimation, such as the antenna

(a) (b)
Fig. 5: Illustrating the hovering-related fading caused by (a)
beam misalignment and (b) sub-optimal beam selection

characteristics and the accuracy of the system used for UAV
navigation, which conditions its stability during hovering.

In Fig. 5b, we show the result of sub-optimal beam selec-
tion after completing the 802.11ad standard beam-sweeping
procedure, caused by the lack of accuracy of the in-built GPS
module, as we discussed in Fig. 2. The selection of a sub-
optimal pair of beams has two consequences. First, it causes
misalignment loss at the center of the hovering displace-
ment range, where the UAV is more likely to be located over
time. We denote this loss as !(D1$?C , in order to distinguish
it from the temporal varying loss discussed in Fig. 5a.
Furthermore, as the transmitter hovers under sub-optimal
beam conditions in Fig. 5b, the magnitude of the !"8B0;
fluctuations would likely change, as the displacement of
UAV would produce misalignment along different regions
of the radiation patterns compared to the case in Fig. 5a,
causing the antenna gains to also vary on a different range of
values. This fact reveals the dependence of !"8B0; with the
selection of a particular pair of beams after beam-sweeping,
highlighting the need to jointly consider both effects. The
selection of a certain pair of beams is determined by the
UAV hovering conditions, distance between transmitter and
receiver and antenna radiation patterns. In addition, it also
depends on the beamforming training parameters, which
determine the angular direction to which transmitter and
receiver steer their beams during beam-sweeping.

3.3.2 Quantifying Hovering Effect on Link Performance

In order to quantify the effect of hovering-related loss on
the link performance, we conduct a set experiments. We
consider three scenarios experiencing different degree of
hovering: a static Ground-to-Ground link, a UAV-to-Ground
link where the UAV navigation system relies on an in-built
GPS localization module, and the same UAV-to-Ground link
where the GPS is replaced by an RTK-GPS module, for in-
creased localization accuracy, as we discussed in Section 3.1.
We show our experimental setup in Fig. 6 for the UAV-to-
Ground case. It consists of a 802.11ad compliant TG sounder
unit mounted on a DJI-M600 UAV operating as a transmitter
and another TG sounder unit mounted on a tripod operating
as the ground receiver. For the Ground-to-Ground link, both
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TABLE 1: SNR (dB) for Different Confidence Levels

Type of Link 25% 50% 75%
Ground-Ground (Static) 18.2 18.7 19
UAV-Ground (Hovering, GPS) 17 17.4 17.9
UAV-Ground (Hovering, RTK-GPS) 5 7.5 10.5

sounders are mounted on tripods. For these experiments, we
collect link path loss and SNR by connecting the transmitter
and receiver sounder units to a host computer through
Ethernet links, as illustrated in Fig. 3, which are long enough
so that we do not compromise the UAV natural hover-
ing pattern. We fix the beamwidth \33� to the narrowest
achievable by TG sounders with its current firmware of
2.8°, motivated by a longer communication range compared
to wider beamwidths. However, the general trends can be
extrapolated to other beamwidths. As the overlay protocol
used is 802.11ad, the best transmitter-receiver beams are
automatically selected as per the standard.

In Fig. 7a we show the path loss collected over time for
all three scenarios considered. These measurements capture
the cumulative fading arising from the two hovering-related
effects discussed in Section 3.3.1, as well as the fading
caused by the UAV airframe quantified in Section 3.2, none
of which apply to the static Ground-to-Ground case. We
first observe that the path loss for the UAV-to-Ground
link using RTK-GPS only differs from the static case by a
magnitude equivalent to the measured airframe fading of
9.5 dB. This is due to the scarce hovering experienced by
the UAV when its navigation system relies on RTK-GPS,
which limits the severity of power fluctuations caused by
beam misalignment, as well as the chances for sub-optimal
beam selection after beam-sweeping completion. In order to
prove that the observed power fluctuations are due to beam
misalignment, we rely on the knowledge of the antenna
radiation pattern. We observe that for a typical maximum
hovering translational displacement along y-axis Δ H and for
a given distance between transmitter and receiver 3, we
can determine the maximum angular displacement in the
azimuth dimension Δ \ = 0C0=

ΔH

3
. Then, from the antenna ra-

diation pattern, we can estimate the gain fluctuation within
the range [−Δ \ ,Δ \ ], which is bounded by 6 dB for the RTK-
GPS case, where Δ H ≈ 0.1 m and 3 = 6< in our setup. We
observe that the gain fluctuation matches the experimental
power fluctuation magnitude in 7a. Notice that fading is
aggravated when the UAV relies on GPS for navigation and
thus, suffers from worse hovering conditions. In this case,
the fluctuating path loss values collected during the entire
experiment time are bounded by 14 dB, which also matches
our estimation based on the antenna radiation pattern.
Moreover, these fluctuations are at least 15 dB above the
case using RTK-GPS. Therefore, we associate this loss gap
to the direct consequence of a sub-optimal beam selection,
as choosing a specific pair of beams determines the region
of the radiation pattern along which the UAV hovering
causes beam misalignment, which may lead to the case
in which sub-optimal pairs never reach perfect alignment.
These results confirm our hypothesis that the navigation
system lack of accuracy causes hovering, eventually leading
to increased fading compared to static setups. In Fig. 7c
we show the Empirical Cumulative Distribution Function
(ECDF) of the measured SNR for the same experiment and

Fig. 6: Experimental setup and close-up view of M600 (inset)
with TG sounder and RTK-GPS unit

all three scenarios considered. The SNR for different confi-
dence level is provided in Table 1. Based on the 802.11ad
protocol [43], the SNR for a GPS-based system maps into a
PHY-bitrate drop of 17% with probability 50% and a drop
of 33% with probability 25% compared to static Ground-to-
Ground links.

3.4 Summary and Discussion
Below, we highlight the main take-away points from this
experimental study that we will directly leverage in our
channel model and beam selection algorithm:
• Hovering introduces significant path loss in mmWave

bands for highly directional, narrow beamwidths. This
loss is dependent on the extent of hovering-related motion
artifacts, the antenna radiation patterns, and the possibil-
ity of an initial sub-optimal beam selection. This, together
with the observed effect the UAV airframe has on signal
propagation, motivates the need to create a channel model
with a systems-driven approach that can be tailored to-
wards different antenna configurations and UAV hovering
characteristics.

• Existing standards for mmWave communication, such as
the 802.11ad, are not optimized for best beam alignment
in UAV links, and lead to a persistent performance degra-
dation over time. Thus, we need to design a custom
beam selection algorithm, which is able to make a better
selection at the end of the regular beam-sweeping phase,
without modifying the standard.

4 MMWAVE CHANNEL MODEL FOR UAV LINKS

In this section, we first determine where our contributions
are within the channel modelling framework in Section 4.1,
where we also discuss the most relevant known results that
are leveraged in building comprehensive mmWave models.
We then introduce our proposed model in Section 4.2, where
we provide a complete estimation of mmWave-band fading
that can be applied to multiple UAV hovering scenarios.
Table 5 lists all notations and can be found at the end of the
document.

4.1 Channel Model Background
In wireless propagation, fading can be classified into large
and small scale. Large scale fading accounts for Free
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Fig. 7: Showing (a) effect of hovering-related losses on the link performance compared to a static case, (b) polar and
Cartesian coordinate systems and beamforming training parameters and (c) SNR drop caused by hovering

Fig. 8: Contribution within the channel model framework

Space Path Loss (FSPL) and shadowing effect. Small scale
fading includes rapid fluctuations of the received signal
strength over very short distance and time, which is man-
ifest through multipath and doppler effect. Our proposed
channel model do not intend to provide a more accurate
estimation of these effects, but instead, to complement exist-
ing channel modelling efforts to obtain an accurate fading
estimation tailored to UAV-to-Ground links. In Fig. 8, we
show a diagram with the aforementioned classification into
large and small scale fading and the effects belonging to
each category. Within this channel modelling framework,
we illustrate where our contributions, i.e., UAV airframe
and hovering-related effects discussed in Section 3.2 and
3.3 respectively, fit. In particular, we consider airframe loss
!� 5 A as additional large scale fading and hovering-related
loss !�>E as small scale fading, as the latter is caused by the
UAV change of location around its targeted coordinates over
time. In Fig. 8, we also refer to some of the most relevant
models in the literature, that can be jointly combined with
our work. In particular, for large scale fading, the NYU Rural
Macro environments (RMa) model [18] is a suitable option,
since it is specifically derived for mmWave frequencies,
obtained through extensive measurements in the 73 GHz
band, with accompanying experimental validation. Other
alternatives such as the 3GPP and ITU-R RMa path loss
models were originally derived for the sub-6 GHz band.
Regarding small scale fading due to multipath, Nakagami
distribution is an accurate model at mmWave frequen-
cies [44]. Finally, additional path loss due to interference
generated by doppler spread is given in [31]. However,
doppler effect is typically considered negligible for speeds

below 10 m/s, and thus, it is not included for scenarios in
which UAVs are hovering at a fixed location.

4.2 Proposed Channel Model for UAV-to-Ground links

In this section, we introduce our proposed stochastic chan-
nel model for estimating additional fading specific to UAV-
based links, cumulatively caused by the UAV airframe and
hovering-related effects discussed in Section 3. In particular,
we consider the airframe effect on the radiation pattern, and
the losses caused by beam misalignment and sub-optimal
beam selection. The proposed model takes multiple input
parameters (Section 4.2.1), to be tailored to the system beam-
forming training configuration, deployment parameters and
hardware assumptions, such as antenna features and level of
accuracy of the UAV localization system. We then introduce
the steps to build the model in Sections 4.2.3-4.2.5, where we
estimate misalignment loss, total hovering-related loss, and
total link-loss, as well as the probability that they remain
below a given threshold, crucial for accurate link-budget
estimation and careful deployment planning.

4.2.1 Input Parameters
In order to provide an accurate fading estimation, our
channel model takes the following inputs:
1) 3-D static and aerial antenna radiation patterns. Our chan-

nel model requires both radiation patterns in order to
determine additional loss caused by the UAV airframe
!� 5 A in the angular domain. We build the 3-D radiation
patterns from 2-D azimuth \ and elevation i slices of
the antenna power distribution. We obtain the 2-D slices
from measurements, as we describe in Section 3.2, as well
as through antenna array synthesis with limited accuracy
(see Fig. 4). Alternatively, if the antenna dimensions are
known, 3-D radiation patterns can be directly obtained
in simulation, using electromagnetic software packages.

2) UAV motion data during hovering. We collect UAV motion
data during the complete flight time, for all translational
and rotational types of motion illustrated in Fig. 1. From
this data, we build the UAV hovering statistics in Section
4.2.3. To measure translational data, we use a highly
accurate low-cost RTK-GPS (EMLID Reach M+).
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3) Beamforming training parameters. In particular, we con-
sider the angular range evaluated during beam-sweeping
Δ \(, , Δi(, , and the angular resolution X\(, , Xi(, , this
is, the angular distance between two consecutive eval-
uated beams. By considering beamforming training pa-
rameters within the model, it is possible to evaluate the
effect of different beam-searching reduction techniques
extensively proposed in the literature in UAV links,
which has been mostly evaluated in static scenarios.
We leverage the beamforming parameters and hovering
statistics built from the UAV positioning data to estimate
the probability for a certain pair of beam to be selected af-
ter the beam-sweeping procedure, in Section 4.2.4. This is
crucial, as the selection of a particular pair of beams with
certain probability, together with the aerial and static
antenna radiation patterns, stochastically determine the
fading experienced (see Fig. 5).

4) Deployment parameters, including the distance between
transmitter and receiver 3, directly provided or esti-
mated from the UAV and Ground node localization data.
Additional fading such as the caused by unfavorable
atmospheric conditions or different types of environment
can be easily build into the model, as we next illustrate
in Section 4.2.2.

4.2.2 A Systems Perspective for Stochastic Fading Estima-
tion
We start by formulating the total link loss or fading !) >C as:

!) >C = !�(%! + !� 5 A + !�>E (1)

where, !�(%! is the Free Space Path Loss, !� 5 A is the
fading caused by the effect of the UAV airframe on the
antenna radiation pattern and !�>E comprises all hovering-
related fading. We separate !�>E into three terms: fading
due to an initial sub-optimal beam selection !(D1$?C , fading
due to distance variations between transmitter and receiver
!ΔA , due to the UAV translational motion along x-axis,
and fading caused by beam misalignment !"8B0; due to
translational motion along y and z axes, as well as yaw and
pitch.

!�>E = !(D1$?C + !ΔA + !"8B0; (2)

Notice from Fig. 5b that, for a given pair of beams
with transmitter and receiver pointing angular directions
{\) ,i) } and {\',i'}, !(D1$?C is deterministic. We use the
notation (D, E) to refer to a specific pair of beams with
indexes D ∈ N in azimuth and E ∈ N elevation dimensions.
A deterministic behaviour also applies to !�(%! and !� 5 A ,
since the distance 3 variability during hovering is included
in !ΔA , as part of !�>E , and assumed to be constant for the
!�(%! estimation. Thus, by considering the deterministic
nature of the aforementioned factors, and noticing that for
a fixed pair of beams, !"8B0; |(D,E) and !ΔA are the only
stochastic terms, we estimate the probability for a given total
link fading !) >C |(D,E) as follows:

%(!) >C |(D,E) ) = %(!ΔA + !"8B0; |(D,E) ) (3)

Where the sum between !ΔA and !"8B0; |(D,E) is related to
the total link fading !) >C |(D,E) according to Eqs.(1) and (2):

!ΔA + !"8B0; |(D,E) =
!) >C |(D,E) − !�(%! − !� 5 A − !(D1$?C |(D,E)

(4)

Notice that Eq.(3) assumes the selection of a given pair
of beams. Therefore, the probability for the UAV-to-Ground
link to experience a certain total fading %(!) >C ) considering
all possible pairs of beams which are candidate to be selected
after the beam-sweeping procedure, depends on (i) the
probability for a given pair of beams (u,v) to be selected
after the beam sweeping procedure, denoted as %(D, E), as
well as (ii) the probability for the link to experience the loss
calculated from Eq.(4), denoted as %(!ΔA + !"8B0; |(D,E) ):

%(!) >C ) =
∑
D,E

%(D, E)%(!ΔA + !"8B0; |(D,E) ) (5)

With
∑
D,E %(D, E) = 1.

Then, the estimated average total link fading is given by:

!) >C = !�(%! + !� 5 A + !�>E (6)

With !�>E the average hovering-related fading:

!�>E = !ΔA +
∑
D,E

(!(D1$?C |(D,E) + !"8B0; |(D,E) ) · %(D, E) (7)

We derive each term in the next sections. Here, we first
remark the systems approach taken by this model, as it
considers hardware-related loss, as well as beamforming
training and deployment parameters. Moreover, the model
provides flexibility to include any additional classical fading
which is relevant to the scenario under analysis, such as
those referenced in Fig. 8. This can be achieved by simply
replacing the term !�(%! by more accurate estimations,
which include additional fading effects such as shadowing
or unfavorable weather conditions, or by directly adding
new terms into Eq.(1).

4.2.3 Modeling Motion of Hovering UAVs
The first step towards building our UAV-to-Ground channel
model, is to determine the hovering-related loss !�>E . This,
together with !� 5 A , already characterized in Section 3.2,
represent fading particular to UAV-links. To this extent,
we statistically model all types of UAV motion during
hovering and build each motion distribution, similar to
the one we show for a single type of motion in Fig. 2.
Recalling Fig. 1, hovering motion manifests in longitudinal,
lateral, and vertical translational displacements along (x, y,
z) axes, as well as rotational displacements around them,
respectively, denoted as roll, pitch, and yaw.

It is important to notice that not all types of motion are
independent from each other. For instance, UAV transla-
tional displacement along the negative side of y-axis −Δ H ,
can be compensated by positive rotational displacement
around z-axis +Δ H0F . Similar dependency exists between
Δ I and Δ ?8C2ℎ . For this reason, it is desirable to define
UAV displacements in a coordinate system which enables
to jointly combine the effect of different types of motion.
We select the polar coordinate system (A, \, i), where A ≡ G,
\ ≡ H0F is the rotational dimension in the plane XY, and
i ≡ ?8C2ℎ is the rotational dimension in the plane YZ, see
Fig. 7b. Moreover, with the selection of the polar coordinate
system, we directly relate UAV displacements with the
antenna radiation pattern, naturally characterized in az-
imuth \ and elevation i, required for estimating hovering-
related loss. The distance between transmitter and receiver
is defined along dimension r. In Table 2, we provide the
conversion from UAV to polar coordinates, according to
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TABLE 2: UAV to Polar Coordinates Conversion

Polar Coordinates UAV Coordinates Projection over (A , \ , i)

ΔA

ΔA(G) = ΔG

ΔA(H) =
√
(ΔH)2 + 32 − 3 ≈ 0

ΔA(I) =
√
(ΔI)2 + 32 − 3 ≈ 0

ΔA(A>;;) = ΔA(?8C2ℎ) = ΔA(H0F ) = 0

Δ \

Δ \(H) = 0C0=(
ΔH

3
)

Δ \(H0F ) = ΔH0F

Δ \(G) = Δ \(I) = Δ \(A>;;) = Δ \(?8C2ℎ) = 0

Δi

Δi(I) = 0C0=(
ΔI
3
)

Δi(?8C2ℎ) = Δ ?8C2ℎ

Δi(G) = Δi(H) = Δi(A>;;) = Δi(H0F ) = 0

TABLE 3: Variance of Hovering Displacement

Navigation
system

f2
ΔG

f2
ΔH

f2
ΔI

f2
ΔA>;;

f2
Δ ?8C2ℎ

f2
ΔH0F

GPS 0.0586 0.035 0.0582 0.1968 0.1876 0.0027
RTK-GPS 0.0032 0.0021 0.0033 0.1415 0.1139 0.0028

Fig. 7b. The notation Δ 8( 9) represents the projection of the
hovering displacement for the UAV coordinate j over the
polar dimension i. Accordingly, hovering displacements in
polar coordinates are given by:

ΔA ≈ Δ G (8)

Δ \ = Δ \(H) + Δ H0F = 0C0=(
Δ H

3
) + Δ H0F (9)

Δi = Δi(I) + Δ ?8C2ℎ = 0C0=(
Δ I

3
) + Δ ?8C2ℎ (10)

In order to characterize the UAV motion comprehen-
sively, we collect experimental hovering data during flight
for all six types of motion in Fig. 1. We perform our experi-
ments under typical hovering conditions, i.e., scenarios with
no buildings within a radius of 15 meters, strong satellite
signal reception (SNR >35 dB) from at least 4 satellites,
and maximum wind speed of 17 miles/hour, which are
conducive for safe and reliable operation. We measured
translational displacement in (x,y,z) coordinates with two
different hardware configurations, for the M600 UAV navi-
gation system relying on (i) GPS and (ii) a high-cost RTK-
GPS, which limits the UAV maximum hovering displace-
ment, and thus, its variance. For both configurations, we
used a separate low-cost RTK-GPS system, mounted on
the UAV with the only purpose of accurate data logging,
not interacting with the UAV navigation system; thereby,
not affecting its flight pattern. For both configurations, we
collected rotational displacement data using IMU sensors.

Figs. 9a and 9b show the distribution of the experimental
data collected for Δ H and Δ H0F respectively, as examples.
From the experimental data collected, we observe that UAV
displacements during hovering follow a Gaussian distribu-
tion in each UAV coordinate j:

Δ 9 ∼ N(`Δ 9 , f2
Δ 9
) (11)
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Fig. 9: Gaussian distribution of UAV (a) translational dis-
placements in y-axis and (b) rotational displacement in yaw

where f2
Δ 9

represents the variance of the displacement and
`Δ 9 its mean value, tending to the targeted coordinates at
which the UAV ideally should be located. Placing the origin
of the UAV coordinate system at the targeted coordinates,
we set `Δ 9 = 0,∀ 9 for simplicity. In Table 3, we provide
specific values for the variance of the data collected. The
hovering statistics used in this work are not pre-determined
and fixed. Instead, we build these statistics from measure-
ments collected during live deployment, as UAV hardware
choices, and operating conditions may be different for spe-
cific use cases.

Next, from the characterization performed in UAV coor-
dinates, we build the hovering distribution in polar dimen-
sions. According to Eq.(8), the probability density function
(PDF) for the displacement in the radial dimension 5A (ΔA )
is approximated by the Gaussian PDF of the longitudinal
displacement Δ G ∼ N(0, f2

ΔG
). Moreover, according to Eq.(9),

the PDF for the displacement in the azimuth dimension
5\ (Δ \ ) needs to consider the combined effect of yaw as well
as the projection over \ of the translational displacements
along y-axis Δ \(H) . We define the unnormalized distribution
for the azimuth displacement as:

5\U (Δ \ ) =
c∫

−c

c∫
−c

5 (Δ \(H) ) 5 (Δ H0F )

X(Δ \ − Δ \(H) − Δ H0F )3ΔH0F 3Δ \(H)

(12)

where 5 (Δ \(H) ) and 5 (Δ H0F ) are the independent Gaus-
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sian PDFs of Δ \(H) and Δ H0F respectively, and X is the Dirac
delta function:

X(Δ \ ) =
{

1, if Δ \ = Δ \(H) + Δ H0F
0, otherwise.

(13)

The PDF for the azimuth displacement 5\ (Δ \ ) is calculated
in Eq.(14) by normalizing 5\U (Δ \ ), and represents the prob-
ability for Δ \ = Δ \(H) +Δ H0F ,∀Δ \(H) ,Δ H0F ∈ [−c, c], in order
to account for possible compensation in \.

5\ (Δ \ ) =
5\U (Δ \ )

c∫
−c

5\U (Δ \ )3Δ \
(14)

The PDF for the displacement in the elevation dimension
5i (Δi), is likewise obtained from Eqs.(12-14), by replacing
Δ H0F by Δ ?8C2ℎ and Δ \(H) by the projection over i of the
translational displacement along z-axis Δi(I) , as per Eq.(10).

4.2.4 Modelling Fading for Sub-Optimal Beam Selection

In Fig. 7a, we showed that the motion experienced by hov-
ering UAVs may cause the selection of sub-optimal pair of
beams when beam-sweeping procedure completes. Further,
in Fig. 5b, we illustrated how the selection of a certain pair
of beams determines (i) the loss at the center of the hovering
displacement range !(D1$?C |(D,E) , as the addition of !) G
and !'G , and (ii) the range of values of the antenna gain
utilized for transmission and reception as the UAV hovers
during the complete flight time. For these reasons, given
the high dependence of fading on the particular pair of
beam selected, the next step towards building our proposed
channel model is to determine the set of candidate pair
of beams in azimuth and elevation dimensions to which
transmitter and receiver may point, post beam-sweeping.
To do so, we do not assume that {\) , i) } for transmitter
and {\', i'} for receiver are independent from each other.
Instead, we consider that for a particular beam {\) , i) },
only a subset of all possible {\', i'} can achieve alignment
between transmitter and receiver, which also depends on
UAV hovering motion. Thus, we determine the subset of
all possible combinations of {(\) , \'), (i) , i')} which are
candidate pair of beams.

Moreover, as illustrated in Fig. 2, alignment and thus,
beam selection occurs when both transmitter and receiver
point to the same angular direction, e.g., both to the same +\
for the azimuth dimension, as they are located facing each
other. Thus, we define the subset of candidate pair of beams
indexes as S = {D, E}, associated to {\D , iE } equal for trans-
mitter and receiver, with D ∈ {1, ...,*}, E ∈ {1, ..., +}, where
U, V are the number of candidate angular directions in \ and
i dimensions respectively, and #1 = * · + , the total number
of candidate pair of beams evaluated. The set of possible
candidates S depends on (i) the beamforming training pa-
rameters, (Section 4.2.1) and shown in Fig. 7b, and (ii) the
hovering conditions and the distance between transmitter
and receiver, jointly characterized through 5\ (Δ \ ), 5i (Δi)
(Section 4.2.3). Thus, given the stochastic nature of hovering,
we need to determine the probability for each candidate pair
of beams (D, E) ∈ S to be selected, in order to provide an
accurate loss estimation.

To this extent, we first determine the PDF for the ground
receiver node to direct its beam toward a certain angular
direction 5' (\). For a static case, this term only depends
on the angular distribution determined by the beamforming
training parameters 5'(, (Δ \(, , X\(, ), and is given by:

5' (\) = 5'(, (Δ \(, , X\(, ) =
{

1
*
, if \ = ? · X\(, ,∀\ ∈ Δ \(,

0, otherwise.
(15)

With ? ∈ Z. We similarly determine 5' (i) in the elevation
dimension considering Δi(, , Xi(, and replacing * by + .
Moreover, the probability for the UAV transmitter node to
direct its beam toward a certain angle 5) (\) is jointly deter-
mined by the distribution given the beamforming training
parameters at the transmitter side 5)(, (Δ \(, , X\(, ) and the
UAV hovering distribution 5\ (Δ \ ). We formally define its
unnormalized distribution as:

5)U (\) =
c∫

−c

c∫
−c

5)(, (\(, ) 5\ (Δ \ )

X(\ − \(, − Δ \ )3Δ \ 3\(,

(16)

Where X was defined in Eq.(13), and the normalized version
of Eq.(16), 5) (\), is obtained similar to Eq.(14). We could
further generalize this analysis by considering transmitter
and receiver beamforming training parameters to be differ-
ent from each other, by simply using different Δ \(, , X\(,
values in Eqs.(15) and (16). Next, we estimate the probability
for a given pair of sub-optimal beams to be selected after
beam-sweeping from the following PDF:

5SD1$?C (\, i) =
5) (\) 5' (\) 5) (i) 5' (i)

c∫
−c

c∫
−c

5) (\) 5' (\) 5) (i) 5' (i)3i3\
(17)

Where the aforementioned dependency between candidate
beams has been included, only considering those candidate
beams that meet \ = \) G = \'G . Then, the probability for
a certain pair of beams (u,v) to be selected after beam-
sweeping is given by:

%(D, E) =
\D+\Γ∫

\D−\Γ

iE+iΓ∫
iE−iΓ

5SD1$?C (\, i)3i3\ (18)

Where \Γ =
\D+1−\D

2 , iΓ =
iE+1−iE

2 . Moreover, we formulate
the fading caused by the selection of a sub-optimal pair of
beams (u,v) according to Fig. 5b, as:

!(D1$?C |(D,E) = !) G (\D) + !'G (\D) + !) G (iE ) + !'G (iE ) (19)

Where each fading term is directly obtained from the 3-D
aerial ℎ0 and static ℎB radiation patterns. To illustrate this
process, we set forth the following example. First, the fading
term at the transmitter side for the candidate beam D in
the azimuth dimension, denoted as !) G (\D), is calculated
as the difference between the transmitter (aerial) antenna
radiation pattern ℎ0 evaluated at \D , and the radiation
pattern maximum value. Notice that the radiation pattern
maximum values in \ and i dimensions correspond to the
antenna broadside directions \1B , i1B , i.e., the maximum of
the radiation pattern, normal to the axis of the array, as we
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show in Fig. 5b. Following this, we estimate the fading terms
in Eq.(19) as:

!) G (\D) = ℎ0 (\1B) − ℎ0 (\D) (20a)
!'G (\D) = ℎB (\1B) − ℎB (\D) (20b)
!) G (iE ) = ℎ0 (i1B) − ℎ0 (iE ) (20c)
!'G (iE ) = ℎB (i1B) − ℎB (iE ) (20d)

With the formulation provided in this section, we are
now able to estimate the fading caused by a sub-optimal
beam selection !(D1$?C , for a given pair of beams (u,v)
within the 3-D space, which is selected with a probability
dictated by 5SD1$?C (\, i).

4.2.5 Modelling Fading for Beam Misalignment

In order to provide a stochastic total link fading estima-
tion, we recall to Section 4.2.2. In particular, in Eq.(3),
we justified that, estimating the probability for the link
to experience a total fading given the selection of a pair
of beams after beam-sweeping %(!) >C |(D,E) ), is reduced to
estimating the probability of the sum between misalignment
loss and translational displacement along the radial dimen-
sion %(!ΔA + !"8B0; |(D,E) ), by exploiting the deterministic
nature of every other fading term involved. Thus, in order to
estimate %(!) >C |(D,E) ), we first define the joint distribution
for beam misalignment as:

5"8B0; (Δ \ ,Δi) = 5Δ \ (Δ \ ) 5Δi (Δi) (21)

Where 5Δ \ (Δ \ ), 5Δi (Δi) are the PDFs for the UAV hovering
displacement in azimuth and elevation characterized in
Section 4.2.3, assumed to be independent from each other.
The probability for a given misalignment loss %(!"8B0; |(D,E) )
can be directly obtained by integrating Eq.(21). Then, we
estimate the probability for a certain !) >C |(D,E) as:

%(!) >C |(D,E) ) =
∭

Ω(ΔA ,Δ \ ,Δi )

5"8B0; (Δ \ ,Δi) 5A (ΔA )3ΔA 3Δi 3Δ \

(22)
With:

ΔA ∈ [−∞,∞], Δ \ ,Δi ∈ [−c, c], Ω(ΔA ,Δ \ ,Δi ) ⊂ C

Where C is the set containing all possible combinations
of UAV displacements in the radial, azimuth and elevation
dimensions {(ΔA ,Δ \ ,Δi)} and Ω is the subset of C such
that the loss term !ΔA + !"8B0; |(D,E) for the subset of dis-
placements considered meets Eq.(4) for a given !) >C |(D,E)
value. The loss term !ΔA is due to small variations on
the distance between transmitter and receiver as the UAV
hovers, causing path loss fluctuations given by:

!ΔA (3�) = 10 · ;>6( 3 + ΔA
3
)2 (23)

Moreover, misalignment loss is caused by displacements in
the \ and i dimensions given a particular pair of beams
!"8B0; |(D,E) , and is directly obtained from the static and
aerial 3-D antenna radiation patterns. The calculation is
similar to Eqs.(20a-20d), with the particularity that misalign-
ment loss is not calculated as additional loss compared to
the broadside direction \1B , but instead, compared to the

angular direction for the specific pair of beams selected
(\D , iE ):

!) G (Δ \ ) = ℎ0 (\D) − ℎ0 (\D + Δ \ ) (24a)
!'G (Δ \ ) = ℎB (\D) − ℎB (\D + Δ \ ) (24b)
!) G (Δi) = ℎ0 (iE ) − ℎ0 (iE + Δi) (24c)
!'G (Δi) = ℎB (iE ) − ℎB (iE + Δi) (24d)

We then have:

!Δ \ |(D,E) = !) G (Δ \ ) + !'G (Δ \ ) (25)

!Δi |(D,E) = !) G (Δi) + !'G (Δi) (26)

Which together determine the 3-D misalignment loss:

!"8B0; |(D,E) = !Δ \ |(D,E) + !Δi |(D,E) (27)

Notice that in contrast to Eqs.(20a-20d), where (\D , iE )
remained constant for a particular pair of beams, here
(Δ \ ,Δi) vary over time as the UAV hovers. Then, the
probability for !"8B0; |(D,E) to be below a certain threshold
WCℎ is defined as:

%(!"8B0; |(D,E) ≤ WCℎ) =
∬

Ω(Δ \ ,Δi )

5"8B0; (Δ \ ,Δi)3Δi 3Δ \ (28)

With:

Ω(Δ \ ,Δi ) = {(Δ \ ,Δi)}/!Δ \ |(D,E) + !Δi |(D,E) ≤ WCℎ
And %(!) >C |(D,E) ≤ WCℎ) can be similarly obtained from

Eq.(22) considering %(!ΔA + !"8B0; |(D,E) ) ≤ WCℎ).

Additionally, we estimate the average total link fading
!) >C and average hovering fading !�>E given in Eqs.(7)
and (6) from (i) the probability for a certain pair of
beams to be selected after beam-sweeping, %(D, E), given
in Eq.(18), (ii) the fading caused by a sub-optimal beam
selection, !(D1$?C |(D,E) , given in Eq.(19), and (iii) the aver-
aged beam misalignment fading !"8B0; |(D,E) and the average
loss caused by translational displacement along the radial
dimension !ΔA given by:

!"8B0; |(D,E) =
∑
Δ \ ,Δi

(!Δ \ |(D,E) +!Δi |(D,E) ) ·%(Δ \ )%(Δi)) (29)

!ΔA =
∑
ΔA

!ΔA · %(ΔA ) (30)

Where %(ΔA ), %(Δ \ )%(Δi) can be obtained by directly
integrating the PDFs derived in Section 4.2.3, and∑
Δ \ ,Δi

(%(Δ \ )%(Δi)) =
∑
ΔA
%(ΔA ) = 1.

Finally, for completeness, we define !Δ \ and !Δi as:

!Δ \ |(D,E) =
∑
Δ \

!Δ \ |(D,E) · %(Δ \ ) (31)

!Δi |(D,E) =
∑
Δi

!Δi |(D,E) · %(Δi) (32)

Fig. 10 illustrate a channel model flow diagram which all
inputs and dependencies considered. The model proposed
here is leveraged in Section 5, where we present an algo-
rithm to diminish hovering-related loss caused by a sub-
optimal beam selection. Specifically, we apply this model in
the upcoming Eqs. (36)- (38), in order to estimate the link
loss in all three dimensions \, i and A.
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Fig. 10: Channel model flow diagram

5 ALGORITHM FOR BEAM OPTIMIZATION IN UAVS

In Figs. 7a and 7c we experimentally demonstrated the
large additional fading compared to static scenarios that
the selection of a sub-optimal pair of beam introduces,
highly degrading the SNR at the receiver. Motivated by this,
we next develop an algorithm to find a near-to-optimum
pair of beams, alternative to the standard, with the goal of
enhancing the average SNR at the receiver, and thus, the
mmWave communication link performance.

5.1 Algorithm Intuition

A major cause for link performance degradation is the
selection of a pair of beams whose performance is evaluated
when the UAV location is close to the boundaries of its
hovering displacement range (Location 1 in Fig. 2). Thus,
even though the selected pair of beams achieves the highest
performance over all candidate pairs at that location, the
tendency of the UAV to move back to the most likely
hovering region (Location 2 in Fig. 2), results in strong beam
misalignment in average, for the selected pair of beams.

Our proposed algorithm prevents this situation by al-
locating weights to the measured received power, for ev-
ery candidate pair considered during beam-sweeping. The
weights F ∈ [0, 1] are given according to the particular UAV
location within the hovering range in which each pair of
beams performance is determined. This is, pair of beams
evaluated at different locations have distinct F values. With
this approach, we aim to quantify trough F the likelihood
that a hovering UAV stays at the location in which the
performance of each pair of beams is measured, being F = 1
the highest. Thus, taking the example in Fig. 2, F values tend
to 1 for those pairs evaluated close to Location 1, and tend to
0 for those pairs evaluated in the surroundings of Location
2. Notice that F serves as a stochastic confidence metric
of the frequency for transmitter and receiver to be aligned
over time, and thus, to provide their maximum antenna
gains. Given F dependency on the UAV location, its value is
conditioned by the hovering statistics, and in particular, by
the angular and radial displacements {ΔA ,Δ \ ,Δi} already
characterized in Section 4.2.3.

5.2 Relative Time Scales Magnitude

In this section, we introduce the concept of temporal scale,
in order to provide an algorithmic solution applicable to
diverse types of systems. We start by defining the time scale
magnitude as the complete time-span the sounders take to
perform beam-sweeping and evaluate the link performance
for all pair of beams. In the WiFi standard 802.11ad, this
process takes up to 30 ms, being lower in the 802.11ay
release [45]. During such time, the UAV transmitter change
of location is negligible, given the long time-span effect
of hovering. We denote this condition as Small Temporal
Scale (STS). Notice that under STS conditions, F value
remains the same for every pair of beams, as they are all
evaluated at the same UAV location. We however, chose to
extend the algorithm evaluation to a generic case, in which
the transmitter location may randomly vary during the
beam-sweeping time, and within the hovering maximum
displacement range. We denote this condition as Large
Temporal Scale (LTS). To evaluate our work performance
under LTS conditions, we operate beam-sweeping within a
time-span of 2 minutes. During this time, different subsets
of beams within the angular beam-sweeping range Δ\(,
are evaluated every few seconds.

Notice that LTS is a generalized case of STS conditions,
where the UAV location changes over time, and thus, differ-
ent pair of beams have different F values. Thus, we focus
on LTS scenarios, and demonstrate that, even under the
most generic conditions, our algorithm is still capable of
determining a near-to-optimum pair of beams.

5.3 Formulating Confidence-Cost Weights

Given the F dependence on the UAV hovering displace-
ments, discussed in Section 5.1, we formulate F as a function
of the PDF in the radial dimension calculated from Eqs.(8)
and (11), as well as the PDFs in the azimuth and elevation
dimensions obtained from Eqs. (12)- (14), as follows:

F: (ΔA ) =
5A (ΔA: )

5A (ΔA = `ΔA )
(33)

F: (Δ \ ) =
5\ (Δ \: )

5\ (Δ \ = `Δ \ )
(34)

F: (Δi) =
5i (Δi: )

5i (Δi = `Δi )
(35)

With : ∈ {1, ...#1} and #1 the total number of pair
of beams evaluated. According to this definition, let us
consider a pair of beams : that was evaluated during beam-
sweeping close to the center of the hovering displacement
range in A and \ dimensions, ΔA : ≈ `ΔA , Δ \ : ≈ `Δ \ , but close
to the boundaries of the hovering displacement range in i

dimension Δi: ≈ `Δi + 3f2
Δi

. Then, F: values according
to Eqs. (33)-(35) are F: (ΔA ), F: (Δ \ ) ≈ 1 and F: (Δ \ ) ≈ 0,
showing high confidence for the UAV to remain at the radial
and azimuth locations in which the pair of beams : was
evaluated during beam-sweeping, and low confidence to
remain at its elevation location.

Notice that the previous formulation gives the same rel-
evance to F in all three dimensions (A, \, i) However, not all
types of displacements in (A, \, i) cause the same degree of
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(a) FSPL and Ideal-Hovering model (b) Aerial-Hovering model (c) Proposed model

Fig. 11: Empirical validation of existing and proposed channel models. Experimental data collected over 10 minutes is
compared with (a) the FSPL and Ideal-Hovering models, (b) the Aerial-Hovering model and (c) the Proposed model

fading. Specifically, in Section 3.3, we experimentally proved
that displacements in \ and i dimensions cause fading of up
to 30 dB due to a sub-optimal beam selection as well as beam
misalignment, highly related to the 3-D antenna radiation
patterns. On the contrary, displacements along the radial
dimension only cause fading fluctuations lower than 1 dB
for the typical hovering conditions we specified in Section
4.2.3. Therefore, we adjust F: according to the averaged
fading expected in each dimension as follows:

F!: (ΔA ) = F: (ΔA ) · (1 −
!ΔA :

!ℎ>E:

) (36)

F!: (Δi) = F: (Δ \ ) · (1 −
!Δ \ :

!ℎ>E:

) (37)

F!: (Δi) = F: (Δi) · (1 −
!Δi :

!ℎ>E:

) (38)

Where !ℎ>E: = !ΔA : +!Δ \ : +!Δi : , and these last three terms
are derived in Eqs.(30)-(32). By doing so, the weights F!: ,
include a stochastically determined cost related to the prob-
ability for the UAV to suffer from fading in each dimension,
if the pair of beams : is selected. This cost, together with
degree of confidence, jointly determine the near-to-optimum
pair of beams :∗, ensuring high average performance.

5.4 Algorithm Formulation and Execution
Algorithm 1 presents the execution flow of our proposed
method in an actual experiment. The algorithm requires
as inputs the received power from the mmWave sounder
units, as well as UAV localization data. During the standard
beam-sweeping, the sounder units generate time-stamped
(CB) power measurements for each of the #1 pair of beams
evaluated (Algorithm 1, input 1), which are forwarded to the
central computer through a control channel by an Ethenet
link. In addition, the RTK-GPS EMLID Reach M+ stores the
time-stamped " coordinate samples collected for the com-
plete beam-sweeping time C(F44? , as the UAV hovers (input

Algorithm 1 Near-to-optimum beam selection under hover-
ing conditions
Input: (?>F):←CB , : = 1...#1 , #1 pairs evaluated
Input: (G, H, I)<←CB ← (;0C, ;>=6, 0;C)<←CB , < = 1...",

" GPS-RTK measurements collected during C(F44?
Output: :∗, : ∈ [1...#1]
1. Build ts-mapping matrix " ∈ R2×#1

� = [(?>F):←CB ; (G, H, I):←CB]
2. Compute hovering statistics from (G, H, I)<∀<
5A (ΔA ) ≈ 5 (G − `G)
5\ (Δ \ ) ≈ 5 (0C0=(

H−`H
3
))

5i (Δi) ≈ 5 (0C0=( I−`I3 ))
3. Compute expected losses !ΔA : , !Δ \ : , !Δi : as in Eqs.(30)-
(32)
4. Compute weights F: (ΔA ), F: (Δ \ ), F: (Δi) from Eqs. (33)-
(35)
5. Adjust weights F!: (ΔA ), F!: (Δ \ ), F!: (Δi) from Eqs. (36)-
(38)
6. Find:
:∗ = <0G: {?>F:F!: (ΔA ) + ?>F:F!: (Δ \ ) + ?>F:F!: (Δi)

2). Once beam-sweeping is completed, we access localiza-
tion data from the host computer through a WiFi link and
convert it from geographic (latitude, longitude, altitude) to
UTM (Universal Transverse Mercator) coordinates (G, H, I).
Then, through the time-stamps, we associate the power
measurement for each pair of beams ?>F: with the UAV
coordinates at the evaluation instant, generating a resultant
mapping matrix � (step 1). From the UAV coordinates data
collected over C(F44? , we build the UAV hovering statistics
(step 2). We use these, together with the static and aerial
antenna radiation patterns, to find the estimated losses for
each dimension A, \, i (step 3), and eventually, the weights
for each pair of beams F: (steps 4, 5). We apply the resultant
weights to the measured power for each pair ?>F: (step 6),
and select the near-to-optimum pair of beams as:

:∗ = <0G: {?>F:F!: (ΔA ) + ?>F:F!: (Δ \ ) + ?>F:F!: (Δi)}
(39)
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TABLE 4: Hovering parameters for Fig. 12a
Maximum

displacement
≈ 3fΔG = 3fΔH

f2
ΔG

f2
Δ \H
|3=6< f2

Δ \H
|3=20<

0.1 m 1.09·10−3 3.08·10−5 2.78·10−6

0.2 m 4.36·10−3 1.23·10−4 1.11·10−5

0.4 m 0.0177 4.84·10−4 4.44·10−5

0.6 m 0.04 1.09·10−3 9.99·10−5

0.8 m 0.07 1.93·10−3 1.77·10−4

1 m 0.11 3.03·10−3 2.77·10−4

1.5 m 0.25 8.31·10−2 2.5·10−2
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Fig. 12: Total fading with (a) hovering and (b) distance

Note that :∗ is optimal only in a static case, where
there is no UAV hovering-related motion. With hovering
and STS conditions, F!: values are equal for all #1 pair
of beams in each dimension, and :∗ is selected only based
on ?>F: , same as the standard. However, notice that if the
one location where all #1 pairs are evaluated differs from
the center of the UAV hovering displacement distribution
in any of the three dimensions, :∗ is still sub-optimal in
average under STS conditions. In this case, a better pair can
be chosen by exploiting the hovering stochastic distributions
provided by our model. In a more general case, under LTS
conditions, in which each pair of beams is evaluated at
different locations, finding the optimum pair is not always
feasible, since there is no guarantee that perfect alignment
occurs within C(F44? . In this case, :∗ given by Eq.(39) is
a near-to-optimum solution, i.e., the best possible solution
given the available data.

6 EXPERIMENTAL RESULTS

We first provide experimental validation for the analytical
channel model formulated in Section 4, using data collected
during UAV actual flights, in Section 6.1. In this section,
we also provide simulation results for multiple scenarios
using the model. Then, in Section 6.2, we experimentally
demonstrate the performance gain achieved with the pro-
posed beam selection algorithm presented in Section 5.
Our setup here is similar to the description provided in Sec-
tion 3.3.2 and illustrated in Fig6, consisting of a TG sounder
unit mounted on a M600 DJI UAV, acting as transmitter,
and a second unit as static ground receiver. Only for the
results presented in Fig. 15, the transmitter is mounted on a
mobile slider in order to emulate the UAV hovering motion
without battery constraints. All other results were obtained
under actual flight.

6.1 Channel Model Validation
In order to validate the fading estimation provided by our
channel model, we establish a UAV-to-Ground link with the

setup in Fig. 6. Once the UAV is hovering during actual
flight, we perform beam-sweeping and fix the best pair
of beams for transmission, according to the standard. We
maintain the selected pair over the remaining UAV flight
time (≈ 10 minutes). From the experimental data collected,
we build the Cumulative Distribution Function (CDF) of the
UAV-to-Ground link path loss, in Fig. 11. The error deviation
of the experimental data is a hardware-specific feature, with
a value of up to 4 dB. Alongside with it, we provide the
estimated path loss using different analytical channel mod-
els. In particular, in Fig. 11a we consider (i) the FSPL model,
which only accounts for frequency and distance between
transmitter and receiver and (ii) the Misalignment Loss, Ideal
Beampattern model, in which we include the ideal antenna
radiation pattern with a beamwidth of 2.8°, shown in Fig. 4,
as well as power fluctuations caused by beam misalignment,
estimated through real hovering data collected over time
during the experiment. The latter model comes closest to
existing works in the literature [31], in which the authors
only account for misalignment loss and the main lobe of
an ideal antenna radiation pattern, neglecting the effect of
secondary side lobes.

In addition, in Fig. 11b we present the estimated path
loss using (iii) the Misalignment Loss, Aerial Beampattern
model, in which we replace the ideal radiation pattern in
the previous model by the 3-D aerial radiation pattern in
Fig. 14b, built from the aerial 2-D azimuth slice in Fig. 4,
and a 2-D elevation slice with \33� = 50° built in simulation
using antenna array synthesis. Thus, in this model, we
account for !� 5 A , additional losses caused by the UAV
airframe. We include theoretical bounds for the analytical
models, estimated by considering an error of 20% on the
typical deviation for the hovering statistical distributions.
This provides a fair comparison between models if insuf-
ficient hovering data is collected, given the UAV battery
constraints, or under the presence of anomalies during
data collection. Lastly, in Fig. 11c, we present the path
loss estimation given by (iv), our Proposed Model. This, in
addition to misalignment loss and realistic 3-D aerial and
static radiation patterns, includes the effect of sub-optimal
beam selection after beam-sweeping. Specifically, we in-
clude the estimated loss for each candidate pair of beams
(dashed blue lines), stochastically determined by a Monte
Carlo simulation, as well as their averaged value. Notice
that our Proposed Model provides the closest estimation to
the experimentally measured path loss, which is seen as
a particular realization of the probabilistic estimation we
provide. Moreover, the results presented here clearly reveal
the accuracy gain achieved when the effect of each UAV-
related fading component discussed so far, is added to the
model. In particular, our model drops estimation error to
≈ 0.2%, approximately 18x lower than the Misalignment
Loss, Ideal Beampattern model, the closest to the state-of-
the-art models existing in the literature. Next, we use our
UAV-to-Ground channel model in order to estimate the
total fading !) >C in a 60 GHz link for multiple scenarios.
In Fig. 12a, we present simulation results for the CDF of
the total path loss, tailored to different maximum UAV
hovering displacements, considered to be equal in \ and
i dimensions. For all cases in Fig. 12a, we set the distance
between transmitter and receiver to 3 =6 <. In Table 4, we
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Fig. 13: Total fading for different (a) beam-sweeping angular range and hovering conditions, (b) beam-sweeping angular
resolution and hovering conditions and (c) 3-D radiation patterns
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Fig. 14: 3-D normalized radiation patterns with {\33�, i33�}:
(a) {2.8°, 2.8°}, (b) {2.8°, 50°}, (c) {2.8°, 8.5°} and (d) {5°, 5°}

provide the UAV hovering statistics used for this simulation.
In addition, we include the hovering statistics for a case of
3 = 20<. In Fig. 12b we estimate the total link path loss for
different 3 values. We observe how additional link fading
is encountered as UAV hovering displacement grows and
distance shrinks.

In Figs. 13a and 13b, we present simulation results for
different beamforming training parameters and two differ-
ent UAV hovering displacements, 0.6 and 1.5 m, respec-
tively representing typical and strong hovering conditions.
From Fig. 13a, path loss increases as the maximum angular
ranges evaluated during beam-sweeping Δ\(, = Δi(,
grow (<0G(, in the figure). This is expected, since for large
Δ\(, ,Δi(, values, the selected pair of beams can poten-
tially be further from the antenna main lobe (broadside
direction). Moreover, as maximum hovering displacement
(<0Gℎ>E in the figure) becomes more severe, chances for sub-
optimal beam selection increase, leading to a worst average
link performance. In addition, from Fig. 13b, we observe
that path loss decreases with the angular beamforming
resolution X(, .

In Fig. 14 we present different 3-D radiation patterns cre-
ated from real measurements in an anechoic chamber (cases
of 2.8° and 8.5°) and simulation (all other beamwidths). The
estimated path loss considering different radiation patterns
in presented in Fig. 13c. This results show a tendency for the
link to suffer from greater path loss, as beamwidth narrows.

6.2 beam selection Validation
In order to validate our beam selection algorithm, we com-
pare the average performance achieved with our proposed
pair of beams and the pair of beams selected by the stan-
dard. We remark here that, during actual UAV experiments,
we need to evaluate both solutions within a single battery-
determined UAV flight-time (≈12 minutes). This prevents

Fig. 15: Initial tests with sounder Tx mounted on slider

vibrations during taking-off and landing from altering rela-
tive location between transmitter and receiver and hovering
patterns, providing a fair comparison between both solu-
tions. Thus, we perform a two-step validation process, by
using two different setups: (i) with the transmitter sounder
mounted on a mobile slider that we remotely control in
order to emulate the random UAV lateral displacements
during hovering without the UAV battery constraint, shown
in Fig. 15 and (ii), during actual UAV flights with the
setup shown in Fig. 6. For both setups, once the UAV is
in hovering motion, we perform beam-sweeping followed
by beam selection according to the 802.11ad standard. We
maintain the selected pair of beams for half the UAV flight-
time. We then find a near-to-optimum pair of beams ac-
cording to Algorithm.1, and fix it for the second half of the
UAV flight-time. The two inputs required by the algorithm
according to Section 5.4 are the measured power obtained
from the mmWave sounder units, and the UAV localization
data obtained from the low-cost RTK-GPS.
For the first setup, in Fig. 17a we show a comparison
between the standard and the proposed solution in terms
of the path loss ECDF. Our proposed solution limits the
average path loss by 8.7 dB. It does so by selecting a pair
of beams evaluated at the center of the UAV hovering
displacement range, even though it presented lower per-
formance during the standard-defined beam-sweeping. In
Fig. 17b, we present a comparison in terms of PHY bit-
rate. With our selected pair of beams, the bit-rate is constant
at its maximum value, since path loss fluctuations are not
sufficient to decrease the modulation order [43], in contrast
to the standard-defined solution.

In Figs. 16a- 16c we introduce results for our second
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(a) measured path loss during beam-sweeping and selected beams, (b) path loss for selected beams and (c) PHY bit-rate
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Fig. 17: Performance comparison between beam selected by
standard and proposed algorithm for slider test in terms of
(a) path loss and (b) PHY bit-rate

setup, from an actual UAV flight. For this test, we initially
locate transmitter and receiver facing each other, and thus,
the optimum pair of beams is expected to be close to the
antenna broadside directions (\1B = i1B = 0°) for both
sounders. In Fig. 16a, we present the measured path loss
for all transmitting and receiving steering angles evaluated
during beam-sweeping. Additionally, we highlight the pair
of beams selected by the standard and the proposed algo-
rithm. As expected, the standard selects the pair of beams
with lowest path loss during evaluation, which is 83.69
dB. However, their angles (-14.1° for transmitter and 5.6°
for receiver) are far from the expected broadside angular
direction. In contrast, our proposed algorithm selects a
different pair of beams in spite of their higher path loss of
99.12 dB during beam-sweeping evaluation, steering toward
-2.8 °, both transmitter and receiver. This selection is driven
by the trade-off between (i) the higher path loss measured
during beam-sweeping, (ii) the more centered UAV location
in (A, \, i) dimensions within the hovering displacement
range, and (iii) the effect the displacement in each dimension
has on the expected average total link fading. In Fig. 16b,
we compare the path loss experienced using our proposed
pair of beams and the one provided by the standard. Our
solution achieves an average path loss reduction of 4 dB. In
Fig. 16c, we compare the PHY bit-rate for both solutions.
In this case, our proposed solution maintains a high bit-rate
above 3 Gbps for the 91% of the measurements taken during
evaluation, compared to 37% achieved by the standard.
We highlight here that the performance gain achieved with
our proposed algorithm varies for each particular realiza-
tion given its stochastic nature, and it is highly dependent
on the hovering pattern, UAV hardware, beam-sweeping

training configuration and deployment parameters. From
our experimental results, our solution guarantees at least the
same performance as the standard, providing a significant
average gain when hovering prevents the standard from
determining the optimal beam selection.

7 CONCLUSIONS

In this paper, we demonstrate the important issues im-
pacting UAV communications in the 60 GHz mmWave
band, in particular those arising from the UAV airframe
and the UAV continuous motion during hovering. For the
latter, we quantify the effect of beam misalignment and the
sub-optimal beam selection encountered when performing
conventional beam-sweeping in real UAV scenarios. We
build a stochastic analytical channel model to estimate the
total path loss in an UAV-to-Ground link, which can be
tailored to different UAV hardware, 3-D antenna radiation
patterns, beamforming training parameters and deployment
conditions. Moreover, driven by the sub-optimal beam se-
lection problem encountered during our experiments, we
propose a low-complexity standard-compliant algorithm in
order to enhance the average link performance. Overall,
we consider that adopting a systems-level approach is the
key to provide accurate fading estimations. This includes
(i) the effect of the UAV airframe on the antenna radiation
pattern, which causes significant fading, (ii) the impact of
a sub-optimal beam selection after beam-sweeping, and (iii)
power fluctuations caused by beam misalignment, whose
magnitude depends on the sub-optimal beam selected as
well as on the transmitting and receiving 3-D radiation pat-
terns. We experimentally validate both the channel model
and our beam selection algorithm with 802.11ad complaint
Terragraph sounder units mounted on DJI M600 UAVs.

ACKNOWLEDGEMENT
This work is supported by the Office of Naval Re-
search under grant N000141612651. The Terragraph Channel
Sounders used for the experiments in this paper are part of
the Facebook Connectivity initiative.

REFERENCES
[1] F. Zhou, M. Y. Naderi, K. Sankhe, and K. Chowdhury, “Making

the Right Connections: Multi-AP Association and Flow Control in
60GHz Band,” in IEEE INFOCOM, pp. 1214–1222, 2018.

[2] “Facilitate America’s Superiority in 5G Technology (5G FAST)
Plan.” Federal Communications Commission.



IEEE TRANSACTIONS ON MOBILE COMPUTING 17

[3] C. Zhang, W. Zhang, W. Wang, L. Yang, and W. Zhang, “Research
challenges and opportunities of uav millimeter-wave communi-
cations,” IEEE Wireless Communications, vol. 26, no. 1, pp. 58–62,
2019.

[4] T. Banerjee, K. R. Chowdhury, and D. P. Agrawal, “Using poly-
nomial regression for data representation in wireless sensor net-
works,” International Journal of Communication Systems, vol. 20,
no. 7, pp. 829–856, 2007.

[5] Z. Xiao, P. Xia, and X.-G. Xia, “Enabling uav cellular with
millimeter-wave communication: Potentials and approaches,”
IEEE Communications Magazine, vol. 54, no. 5, pp. 66–73, 2016.

[6] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient
deployment of multiple unmanned aerial vehicles for optimal
wireless coverage,” IEEE Communications Letters, vol. 20, no. 8,
pp. 1647–1650, 2016.

[7] A. Trotta, M. Di Felice, F. Montori, K. R. Chowdhury, and
L. Bononi, “Joint coverage, connectivity, and charging strategies
for distributed UAV networks,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 883–900, 2018.

[8] G. Secinti, P. B. Darian, B. Canberk, and K. R. Chowdhury, “Re-
silient end-to-end connectivity for software defined unmanned
aerial vehicular networks,” in IEEE PIMRC, pp. 1–5, 2017.

[9] J. Kim and A. F. Molisch, “Enabling Gigabit services for IEEE
802.11ad-capable high-speed train networks,” in IEEE Radio and
Wireless Symposium, 2013.

[10] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering
with eyes closed: Mm-Wave beam steering without in-band mea-
surement,” IEEE INFOCOM, 2015.

[11] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia,
and J. C. Widmer, “IEEE 802.11ad: directional 60 GHz communi-
cation for multi-Gigabit-per-second Wi-Fi [Invited Paper],” IEEE
Communications Magazine, 2014.

[12] L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia,
“3d beamforming for flexible coverage in millimeter-wave uav
communications,” IEEE Wireless Communications Letters, 2019.

[13] H. Safi, A. Dargahi, and J. Cheng, “Spatial beam tracking and
data detection for an fso link to a uav in the presence of hovering
fluctuations,” arXiv preprint arXiv:1904.03774, 2019.

[14] “MATRICE 600 UAV Specifications.” https://www.dji.com/es/
matrice600/info. Accessed: 2020-04-01.

[15] S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-
wave propagation channel characterization for short-range wire-
less communications,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 1, pp. 3–13, 2008.

[16] J. Huang, C.-X. Wang, R. Feng, J. Sun, W. Zhang, and Y. Yang,
“Multi-frequency mmWave massive MIMO channel measure-
ments and characterization for 5G wireless communication sys-
tems,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 7, pp. 1591–1605, 2017.

[17] D. He, L. Wang, K. Guan, B. Ai, J. Kim, and Z. Zhong, “Channel
Characterization for mmWave Vehicle-to-Infrastructure Commu-
nications in Urban Street Environment,” in 2019 13th European
Conference on Antennas and Propagation (EuCAP), pp. 1–5, IEEE,
2019.

[18] G. R. MacCartney and T. S. Rappaport, “Rural macrocell path
loss models for millimeter wave wireless communications,” IEEE
Journal on selected areas in communications, 2017.

[19] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mel-
lios, and J. Zhang, “Overview of millimeter wave communications
for fifth-generation (5G) wireless networks—With a focus on prop-
agation models,” IEEE Transactions on Antennas and Propagation,
vol. 65, no. 12, pp. 6213–6230, 2017.

[20] T. Abbas, F. Qamar, I. Ahmed, K. Dimyati, and M. B. Majed, “Prop-
agation channel characterization for 28 and 73 GHz millimeter-
wave 5G frequency band,” in 2017 IEEE 15th student conference on
research and development (SCOReD), pp. 297–302, IEEE, 2017.

[21] J. Blumenstein, J. Vychodil, M. Pospisil, T. Mikulasek, and
A. Prokes, “Effects of vehicle vibrations on mm-wave channel:
Doppler spread and correlative channel sounding,” in 2016 IEEE
27th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), pp. 1–5, IEEE, 2016.

[22] X. Cai, A. Gonzalez-Plaza, D. Alonso, L. Zhang, C. B. Rodrı́guez,
A. P. Yuste, and X. Yin, “Low altitude UAV propagation channel
modelling,” in IEEE EUCAP, pp. 1443–1447, 2017.

[23] W. Khawaja, I. Guvenc, and D. Matolak, “UWB channel sounding
and modeling for UAV air-to-ground propagation channels,” in
IEEE GLOBECOM, pp. 1–7, 2016.

[24] D. W. Matolak and R. Sun, “Unmanned aircraft systems: Air-
ground channel characterization for future applications,” IEEE
Vehicular Technology Magazine, vol. 10, no. 2, pp. 79–85, 2015.

[25] W. Khawaja, I. Guvenc, D. W. Matolak, U.-C. Fiebig, and N. Sch-
neckenberger, “A survey of air-to-ground propagation channel
modeling for unmanned aerial vehicles,” IEEE Communications
Surveys & Tutorials, 2019.

[26] G. E. Athanasiadou and G. V. Tsoulos, “Path loss characteristics for
uav-to-ground wireless channels,” in IEEE EuCAP, pp. 1–4, 2019.

[27] E. Greenberg, A. Bar, and E. Klodzh, “Los classification of uav-to-
ground links in built-up areas,” in IEEE COMCAS, pp. 1–5, 2019.

[28] P. S. Bithas, V. Nikolaidis, A. G. Kanatas, and G. K. Karagianni-
dis, “Uav-to-ground communications: Channel modeling and uav
selection,” IEEE Transactions on Communications, 2020.

[29] W. Khawaja, O. Ozdemir, and I. Guvenc, “UAV Air-to-Ground
Channel Characterization for mmWave Systems,” in IEEE 86th
Vehicular Technology Conference, 2017.

[30] R. Kovalchukov, D. Moltchanov, A. Samuylov, A. Ometov, S. An-
dreev, Y. Koucheryavy, and K. Samouylov, “Analyzing Effects
of Directionality and Random Heights in Drone-Based mmWave
Communication,” IEEE Transactions on Vehicular Technology, 2018.

[31] M. T. Dabiri, H. Safi, S. Parsaeefard, and W. Saad, “Analytical
Channel Models for Millimeter Wave UAV Networks under Hov-
ering Fluctuations,” arXiv preprint arXiv:1905.01477, 2019.

[32] D. Steinmetzer, D. Wegemer, M. Schulz, J. Widmer, and M. Hollick,
“Compressive millimeter-wave sector selection in off-the-shelf
IEEE 802.1 lad devices,” in Proceedings of the 13th International
Conference on emerging Networking Experiments and Technologies,
pp. 414–425, ACM, 2017.

[33] S. Q. Zhang, H. T. Kung, and Y. Gwon, “InferBeam: A Fast Beam
Alignment Protocol for Millimeter-wave Networking,” CoRR,
vol. abs/1802.03373, 2018.

[34] J. Palacios, D. De Donno, and J. Widmer, “Tracking mm-wave
channel dynamics: Fast beam training strategies under mobility,”
in IEEE INFOCOM, pp. 1–9, 2017.

[35] W. Xu, F. Gao, S. Jin, and A. Alkhateeb, “3d scene based
beam selection for mmwave communications,” arXiv preprint
arXiv:1911.08409, 2019.

[36] M. S. Sim, Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, “Deep
learning-based mmwave beam selection for 5g nr/6g with sub-6
ghz channel information: Algorithms and prototype validation,”
IEEE Access, vol. 8, pp. 51634–51646, 2020.

[37] Y. Wang, A. Klautau, M. Ribero, A. C. Soong, and R. W. Heath,
“Mmwave vehicular beam selection with situational awareness
using machine learning,” IEEE Access, vol. 7, pp. 87479–87493,
2019.

[38] “Terragraph by Facebook. Solving the Urban Bandwidth Chal-
lenge.” https://terragraph.com. Accessed: 2020-05-31.

[39] “DJI D-RTK GNSS with DATALINK PRO 900 (GPS + BDS).”
https://www.bhphotovideo.com/c/product/1379999-REG/dji
cp sb 000376 matrice d rtk ground system.html. Accessed:
2020-04-27.

[40] “RTK GNSS Reach Module for UAV Mapping.” https://emlid.
com/reach/#specifications. Accessed: 2020-04-01.

[41] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul
and access in small cell networks,” IEEE transactions on communi-
cations, vol. 61, no. 10, pp. 4391–4403, 2013.

[42] J. Verbeke and S. Debruyne, “Vibration analysis of a uav multirotor
frame,” in Proceedings of ISMA 2016 International Conference on
Noise and Vibration Engineering, pp. 2401–2409, 2016.

[43] X. Zhu, A. Doufexi, and T. Kocak, “Beamforming performance
analysis for ofdm based ieee 802.11 ad millimeter-wave wpans,”
in 2011 8th International Workshop on Multi-Carrier Systems & Solu-
tions, pp. 1–5, IEEE, 2011.

[44] N. Goddemeier and C. Wietfeld, “Investigation of air-to-air chan-
nel characteristics and a UAV specific extension to the rice model,”
in IEEE Globecom Workshops, 2015.

[45] P. Zhou, K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, and
Y. Liu, “IEEE 802.11 ay-based mmWave WLANs: Design chal-
lenges and solutions,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 3, pp. 1654–1681, 2018.

https://www.dji.com/es/matrice600/info
https://www.dji.com/es/matrice600/info
https://terragraph.com
https://www.bhphotovideo.com/c/product/1379999-REG/dji_cp_sb_000376_matrice_d_rtk_ground_system.html
https://www.bhphotovideo.com/c/product/1379999-REG/dji_cp_sb_000376_matrice_d_rtk_ground_system.html
https://emlid.com/reach/#specifications
https://emlid.com/reach/#specifications


IEEE TRANSACTIONS ON MOBILE COMPUTING 18

TABLE 5: TABLE OF NOTATIONS

Symbol Description
List of Acronyms
)� Terragraph
�,+ Antenna Weight Vector
')  Real-Time Kinematic
�"* Inertial Measurement Unit
��'% Effective Isotropic Radiated Power
���� Empirical Cumulative Distribution Function
%�. − 18CA0C4 Physical layer bitrate
(#' Signal-to-Noise Ratio
) G, 'G Transmitter, Receiver
Antenna Parameters
\ Azimuth
i Elevation
\33� , i33� 3-dB beamwidth in azimuth, elevation
\1B , i1B Broadside direction in azimuth, elevation
� Electric field
/0 Free-space impedance
%3 Power density
6 Antenna gain
%A Received power
ℎ0 Aerial radiation pattern (UAV)
ℎB Static radiation pattern (Ground)
Beamforming Training Parameters
Δ \(, , Δi(, Beam-sweeping angular range
X\(, , Xi(, Beam-sweeping angular resolution
UAV Hovering Model Parameters
9 UAV coordinate {x, y, z, roll, pitch, yaw}
8 Polar coordinate{A , \ , i}
Δ 9 , Δ8 Hovering displacement in dimensions 8, 9
Δ8( 9) Projection of displacement in coord. 9 over 8
`Δ 9 Mean vale of displacement in 9

f2
Δ 9

Variance of displacement in 9

5 (Δ 9 ) PDF of displacement in 8
58 (Δ8) PDF of displacement in 9

5ıU (Δ8) Unnormalized PDF of displacement in 8
X (Δ8) Dirac delta function for displacement in 8
Channel Model Parameters
3 Distance between transmitter and receiver
!�(%! Free Space Path Loss
!�5 A UAV airframe-related loss
!�>E Hovering-related loss
!(D1$?C Sub-optimal beam selection loss
!"8B0; Beam misalignment loss
!ΔA Distance 3 fluctuation loss
!)>C Total link loss
\) , i) Transmitter steering angles
\' , i' Receiver steering angles
5) (\) , 5) (i) Tx PDF to sweep in certain angle
5' (\) , 5' (i) Rx PDF to sweep in certain angle
5)(, Tx steering PDF given beamforming
5'(, Rx steering PDF given beamforming
D, E Candidate beam indices in \ and i
*, + Total candidate beams in \ and i
( Subset of candidate beams (D, E)
#1 Total combination of candidate beams
!) G (\D) , !) G (iE ) !(D1$?C at transmitter given pair (D, E)
!) G (Δ \ ) , !) G (Δi) !"8B0; for hovering displacements Δ \ , Δi
!Δ8 Loss caused by UAV displacement in 8
� Set of all possible combinations of Δ8
Ω Subset of � causing a given loss
WCℎ Threshold for stochastic loss estimation
Algorithm Parameters
F: (Δ8) Confidence weight, pair :, dimension 8
F!: (Δ8) Confidence-cost weight, pair :, dimension 8
?>F: Measured power pair of beams :
CB Time-stamped
CBF44? Beam-sweeping time
" Location samples collected during CBF44?
� Mapping matrix (?>F: ,* �+G,H,I )
:∗ Proposed pair of beams

Sara Garcia Sanchez received the B.S. and
M.S. degrees in Electrical Engineering from Uni-
versidad Politecnica de Madrid in 2016 and 2018
respectively. She is currently a PhD candidate
at the Department of Electrical and Computer
Engineering in Northeastern University, under
the guidance of Prof. Kaushik Roy Chowdhury.
Her research interests include mmWave, UAV
communications, MIMO and optimization tech-
niques.

Subhramoy Mohanti is a PhD candidate at
the Department of Electrical and Computer Engi-
neering in Northeastern University. He received
the M.S. degree from Northeastern University in
2016. He is the recipient of the IEEE INFOCOM
Best Paper Award (2018) and the Northeast-
ern University Graduate Dissertation Research
Grant (2015). His current research areas include
UAV networking and communication, wireless
protocols, networks, scheduling and optimization
techniques.

Dheryta Jaisinghani is a postdoctoral research
associate in Next Generation Networks and Sys-
tems (GENESYS) lab at Northeastern Univer-
sity. Her research interests are in the areas of
pervasive and ubiquitous computing with par-
ticular focus on networked systems, large-scale
WiFi networks, software-defined-networks, and
mobile computing. Dheryta received her Ph.D.
in Computer Science (Specialization: WiFi Net-
works) from Indraprastha Institute of Information
Technology - Delhi, India in 2019. She received

her master’s degree in information technology (Specialization: Network-
ing and Communication) from International Institute of Information Tech-
nology - Bangalore, India in 2012. She is a recipient of the Institute Gold
Medal for overall performance during her masters. She has worked as a
visiting researcher with LiveLabs, Singapore Management University in
2017. She interned at Arista Networks (Then Airtight Networks) in 2014.
Before her research career, she was working as a software engineer in
Accenture Services Private Limited from 2008-2010.

Kaushik Roy Chowdhury (M’09-SM’15) re-
ceived the M.S. degree from the University of
Cincinnati in 2006, and the Ph.D. degree from
the Georgia Institute of Technology in 2009. He
is currently Professor with the Electrical and
Computer Engineering Department and Assoc.
Director of the Institute for the Wireless IoT. He
was a winner of the Presidential Early Career
Award for Scientists and Engineers (PECASE)
in 2017, ONR Director of Research Early Career
Award in 2016 and the NSF CAREER Award in

2015. His current research interests include deep learning for wireless
sensing and spectrum access, networked robotics, wireless RF energy
harvesting/transfer and IoT applications for intra/on-body communica-
tion.


	Introduction
	Related work 
	Study of UAV hovering in mmWave links 
	Hardware Selection
	Effect of UAV Airframe on the Antenna Radiation Pattern
	 Effect of UAV Hovering on the Link Performance
	Understanding Hovering-Related Effects
	Quantifying Hovering Effect on Link Performance

	Summary and Discussion

	mmWave Channel Model for UAV Links
	Channel Model Background
	Proposed Channel Model for UAV-to-Ground links
	Input Parameters
	A Systems Perspective for Stochastic Fading Estimation
	Modeling Motion of Hovering UAVs
	Modelling Fading for Sub-Optimal Beam Selection 
	Modelling Fading for Beam Misalignment 


	Algorithm for Beam Optimization in UAVs
	Algorithm Intuition
	Relative Time Scales Magnitude
	Formulating Confidence-Cost Weights
	Algorithm Formulation and Execution

	Experimental results
	Channel Model Validation
	beam selection Validation

	Conclusions 
	References
	Biographies
	Sara Garcia Sanchez
	 Subhramoy Mohanti
	Dheryta Jaisinghani
	Kaushik Roy Chowdhury


