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Abstract—UAVs are being rapidly deployed in many
surveillance-related and monitoring applications worldwide.
Thus, identifying a known UAV in a larger pool of devices
is important. This task is often complicated in dense urban
environments or low-level flight deployment cases where tradi-
tional radar-based detection becomes difficult. In this work, we
describe deep convolutional neural network architectures and pre-
processing steps suitable for capturing RF signals from in-flight
UAVs for detection of the type of the UAV. Our objective is to
leverage subtle discriminative features that may be embedded in
the signal transmissions through RF fingerprinting for identifying
(i) if the test signal comes from an unseen UAV (with respect
to the training set), and (ii) if it is from a seen UAYV, then we
identify the label used during training time. Unlike static data
collections, the mobile scenario is more challenging due to the
rapid fluctuations in the wireless channel and Doppler effects
which impair successful classification. We study the efficacy of
our approach under different distances, flight/mobility patterns,
interference conditions to emulate real-world situations with high
fidelity. Our experimental dataset contains signals from seven
different make/models, collected within an RF anechoic chamber.

Index Terms—UAV RF Fingerprinting, Convolutional Neural
Networks, New UAV Detection

I. INTRODUCTION

The demand for unmanned aerial vehicles (UAVs) is at an
all-time high, and this market segment is expected to keep
growing [1]. With various military and civilian applications, the
global UAV market size is expected to expand from $14 billion
USD in 2018 to $43 billion in 2024 [2]. The recent COVID-19
pandemic may have boosted UAV sales, as consumers seek
out socially-distanced activities and companies are exploring
autonomous methods for transporting goods and services [3].
However, this unprecedented rise in UAV sales also bring many
concerns of public safety and personal privacy, particularly for
small commercial-off-the-shelf (s-COTS) UAVs, which have
already been used for armed attacks, unlawful surveillance,
and cyber attacks [4]. Therefore, in order to combat these
threats, there is a growing investment in research towards UAV
detection and classification.

Several methods for UAV detection and classification has
already been proposed. The use of visual recognition, infrared
(IR) recognition, acoustic recognition, and radar probing have
met with limited success with modality-specific shortcomings,
such as limited detection range and sensitivity to environmental
noise. Use of radio frequency (RF)-based techniques, also
known as RF fingerprinting, is a candidate solution to some of
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these problems due to its energy efficiency, low-cost hardware
installation, and ability to deal with noise via passive listening,
high gain antennas, and de-noising techniques, respectively [5].
Our previous works use RF fingerprinting to detect and classify
proprietary waveforms from DJI Matrice 100 UAVs [6] as well
as other DJI UAV models [7]. A key limitation of our prior
works, as well as many of the other works in this topic, is that
the dataset used for classification of UAVs only consists of
transmitted signals from UAVs in fixed positions, i.e., stationary
on the ground, or hovering at a fixed position and altitude in
the air. In reality, UAVs, particularly when used with malicious
intent, are rarely in only one constant position; rather, they
are constantly flying from one place to another. Thus, motion
adds additional complications such as Doppler shift and rapid
fluctuations in the wireless channel, which may negatively
impact classification of UAV models using their transmitted
RF signals. To the best of our knowledge, this is the first paper
to address the specific impact of flying and motion on UAV
classification with RF fingerprinting.

Our approach, while leveraging the class of well-known
neural networks known as convolutional neural networks
(CNNs), contains a number of novel aspects. For the UAV
dataset, we collect transmitted waveforms from seven COTS
UAVs within an RF anechoic chamber to isolate the UAV
signals from any background noise. The signals are collected
from UAVs in two motion-based categories: stationary and
flying (either taking off, flying, or landing). The transmissions,
which are composed of streams of raw in-phase and quadrature
(I/Q) samples, are further filtered and preprocessed into
smaller data transmissions. Then, we use two distinct CNN
architectures, one which has previously shown to be widely
successful in RF fingerprinting and image processing tasks [8],
and a novel ‘light’ version of the previous architecture. Our goal
is to both classify seven COTS UAV models and demonstrate
the effects of motion on classification. Finally, given that new
UAVs are always being developed, we implement a method
for new UAV detection, that is, detection of UAV types that
our CNN models have not been trained on. We do this by
comparing the statistics from the UAVs that the architectures
are trained on with the statistics of the incoming signals, using
limited additional computational resources.

The remainder of this paper is organized as follows. In
Section II, we elaborate on the collected dataset, including the
UAV models used and the data collection and filtering process.
We describe in Section III the UAV classification and new UAV
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detection methods, and evaluate our methods in Section IV.
Finally, we give our conclusions for this work in Section V.
II. BACKGROUND

A. UAV Models

We collect RF signals from seven UAV models within an
RF anechoic chamber. These models, along with some of their
basic characteristics, are presented in Table 1. For the full list

of specifications, please see [9]-[15].
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TABLE I: Summary of UAV models used.
B. Collection Setup

1) Hardware and Software: In our setup, we use two types
of receivers (Rxs) as RF sensors: (i) one CRFS RFeye Portable
Recorder Real-time Spectrum Analyzer (RTSA), and (ii) two
Ettus X310 Universal Software Radio Peripherals (USRPs).
The RTSA is connected to a ETS-Lindgren 3181 Broadband
Mini-Bicon antenna, and the X310s each use two VERT2450
dual-band omni-directional antennas.

The RTSA is connected to a laptop containing CRFS
Deepview, which is manually set to consecutively record a
100 MHz bandwidth (BW) at each of 2.4, 5.2, and 5.8 GHz,
depending on the known frequencies transmitted by the UAV
being tested. For the X310s, both USRPs are connected to
a laptop running GNURadio. A custom script in GNURadio
is implemented such that up to two of the aforementioned
frequencies are collected at once. The primary purpose of the
RTSA dataset is to visualize the data, and the X310 dataset is
formatted and is used for further analysis in this work. The two

datasets, though recorded simultaneously, are not synchronized.

2) Setup and Procedure: The hardware and laptops are
placed on a raised platform within the RF anechoic chamber
with the UAV under testing placed >20 ft. away such that there
is line-of-sight (LOS) between the UAV being tested and the
antennas. The collection setup is shown in Fig. 1. In order to
collect the dataset, we designate a UAV pilot who controls the
UAV remotely, and a data collector, who operates the sensors
concurrently.

C. Dataset and Filtering

For the dataset, we specify four unique mobility-based
scenarios for the UAVs, and we record the UAV transmissions
for each scenario:

« Stationary: In this scenario, both the UAV and controller

are turned on and placed >20 ft. from the custom antenna.

Fig. 1: Experimental setup in the RF anechoic chamber.

The UAV operator checks to see if the devices are
connected; that is, if the controller can detect the UAV,
and if the UAV is able to fly. The UAV is grounded in
place without any propellers turned on.

o Takeoff: In this scenario, the UAV is on ground before
recording starts. Once the sensor operator begins recording,
the UAV operator immediately gives a three-second
countdown to the sensor operator before issuing the
command for the UAV to take off, i.e., begin flying
upwards. After taking off, the UAV operator keeps the
UAV hovering at a set height in the air for the duration
of the recording.

o Flying: In this scenario, the UAV is hovering mid-air
before the recording begins. The UAV operator may fly
the UAV in any direction during the recording, as long as
the UAV is 20-40 ft. from the antennas, unless otherwise
specified.

o Landing: In this scenario, the UAV begins in a hovering,
mid-air position before recording. Once the sensor operator
begins recording, the UAV operator immediately gives
a three-second countdown to the sensor operator before
inputting the command for the UAV to land, i.e., descend
downwards to the ground, turning off its propellers after
it has landed. The UAV remains on ground for the rest
of the duration of the recording.

The latter three scenarios are grouped together into one
category, motion. For each scenario, we start by collecting
~10s (~5M I/Q samples) for each UAV and every scenario,
at every known transmission frequency band.

Once the dataset is collected, we move to selectively filter
the data such that the dataset only contains only the video
downlink signal from each UAV to its corresponding controller,
as confirmed by viewing the spectrum when only the UAV
is turned on. First, we select a 10 MHz BW in which the
downlink signal per UAV is known to be transmitting, and cut
out the rest of the signal. Then, we split the filtered signal into
chunks of 10,000 samples and label each file for easier file
management. We use a root mean squared (RMS) threshold,
we filter out any noise, cutting out large gaps of the signal in
the time domain. Finally,we collect 5 GB worth of signals from
each UAV, consisting of an approximately equal number of
samples for stationary and motion scenarios, to ensure balance
in NN training.

III. METHODOLOGY

In this section, we describe the architectures of the CNNs
we used for RF fingerprinting, as well as the training and test
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Fig. 2: Architectures of the (a) AlexNetID, and (b) AlexNetlD-lite
models.

pipelines for UAV model classification. Then, we describe our
methodology for detecting when a transmission comes from a
new UAV model that the CNN has not been trained on.

A. Convolutional Neural Network Architectures

For the goal of RF fingerprinting using our flying UAV
dataset, we use two CNN architectures, inspired by the AlexNet
model [8] and implemented in Python using Keras [16] libraries
with TensorFlow backend. The first model, which we call the
AlexNet1D model, is a forward CNN with ~1.1M parameters. It
consists of five stacked groups of convolutional layers, followed
by two fully-connected (FC) layers of sizes 256 and 128,
respectively, and ending with a Softmax layer with the same
size as the number of UAV models (classes). Each stacked
group contains two convolutional layers each with 128 filters,
with convolution size of 7 and 5, respectively, followed by
a MaxPooling layer. The second architecture, which we call
the AlexNetlD-lite model, is a smaller model based on the
AlexNet1D model with ~69k parameters that consists of three
stacked groups, a fully-connected layer of size 128, another
fully-connected layer of size 64, and a last fully-connected
layer with the same size as the number of UAV models once
more. The three groups each contain a convolutional layer with
64 filters and 3 taps, a MaxPooling layer, another convolutional
layer with 32 filters and 5 taps, and a final MaxPooling layer.
The architectures are shown in Fig. 2.

B. Training and Testing Pipelines

Preprocessing. In order to prepare the entire dataset for usage
in either CNN model, we first perform a preprocessing step.
We randomize and partition the dataset into distinct training,
validation, and testing groups, consisting of 70%, 10%, and 20%
of the total dataset, respectively. From there, we assign each
transmission in the training set a ’true’ label that reflects which
UAV the transmission came from. Once the entire training set
is labeled, we calculate the mean p and standard deviation o
over the entire training set for normalization purposes during
training, validation, and testing.

Training Pipeline. We train and test our CNNs on a per-
slice basis. Each slice is a sequence of consecutive 1I/Q
samples with length slice_size, in each transmission. We feed
the training data to the CNNs in the form of tensors with
dimensions of (batch_size, slice_size, 2). The first dimension
“batch_size” is chosen as a power of 2 and contributes to GPU
parallelization. During training, a number as large as batch_size
transmissions are randomly selected from the training set
and loaded in the memory. From each transmission, one
slice with length slice_size with random position is selected.
Therefore, batch_size slices are stacked together, and the

real and imaginary parts are separated to construct the last
dimension of the tensor. After the tensors are formed, each
tensor X is normalized with respect to mean (1) and standard
deviation (o) of the training set, as shown in (1), which were
calculated during the preprocessing step. The normalization
step yields the normalized batch X, , that is fed into the
CNN, along with the one hot representation of true labels in
the form of (batch_size, # Classes).

X—p
g

Xnorm. = (1)
We use the Adam optimizer with a learning rate of 0.0001
and a categorical cross entropy loss function to train the CNNs.
At the end of each training epoch, we test the CNN on the
validation set. We stop training when the validation accuracy
does not improve for 3 consecutive epochs.
Testing Pipeline. During testing, we load test set transmissions
into the architecture one by one and slice each transmission
into consecutive slices with stride = 1. We stack the slices
together to form the test batch, which is fed into the trained
CNNs. The output of CNN is a probability vector for each
test slice. The probability vector is a vector with a length
equal to the number of classes and its elements show the
probability of each class being the predicted class by the CNN.
The predicted class is the index of the largest element in the
probability vector and is calculated by passing the probability
vector through an argmax function. We report two types of
accuracy: (i) slice accuracy, and (ii) transmission accuracy.
To calculate slice accuracy, we classify all the slices in all
the transmissions in the test set, and divide the number of
correctly predicted slices by the number of total slices in the
test set. To calculate transmission accuracy, we sum all the
probability vectors gained from each transmission to achieve
a probability sum vector. Then, we choose the index of the
largest element in the probability sum vector as the predicted
class for each transmission. We divide the number of correctly
predicted transmissions by the total number of transmissions
in the testing set to achieve transmission accuracy.

C. New UAV Detection

In the proposed classifier CNN, the number of neurons in the
last layer are the same as the number of UAVs (classes) in the
training set. We call the UAVs, whose signals are seen by the
CNN during training, the ‘in-library’ UAVs. If any input slice,
either from an in-library or ‘out-of-library’ (new) UAV, is fed
to the trained CNN, it inevitably triggers a last layer neuron
that corresponds to one of the in-library UAVs. Therefore, we
need a method to distinguish between a signal that is either
from one of the in-library UAVs or from a new UAV that
will inevitably be classified as an in-library UAV. To do this,
we extend the new class detection algorithm that is proposed
in [17] for new device detection of static transmitters to our
flying UAV dataset.

To explain this method, we assume a test set consisting
of transmissions from a specific UAV in our dataset as the
new UAYV, and a training set consisting of transmissions from
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rest of the UAVs as in-library UAVs. We train the CNN on
the training set. When the CNN is fully trained, we test the
network on the same training set consisting of transmissions
from in-library UAVs, and calculate two types of thresholds:

Threshold 1. Probability Threshold. For each UAV, we obtain
a set of correctly classified probability vectors in all the
transmissions belonging to that UAV. In the set belonging
to each UAV, we record the maximum value in each vector.
We perform a statistic function (whose options are shown in
Table II) on all the maximum values that belong to each UAV,
to obtain the Probability Threshold for each UAV.

Threshold 2: Ratio Threshold. For each UAV, we go through
the transmissions belonging to that UAV. We record the number
of correctly classified slices divided by total number of slices in
each transmission. Next, we perform the same statistic function
that we use for Threshold 1, to obtain the Ratio Threshold for
each UAV.

After the thresholds are calculated, we test the trained
network on transmissions with unknown labels that we call the
test set. As explained before, each test transmission is predicted
to belong to one of the in-library UAVs. We call this prediction
the ‘best-guess’. In order to evaluate the validity of the best-
guess, we calculate two metrics for each test transmission:
Metric 1: Prediction Probability. We obtain a set of max-
imum values in each probability vector, belonging to each
test transmission. We perform the same statistic function that
we used for calculating thresholds on this set to obtain the
Prediction Probability for that test transmission.

Correct Slice Ratio. We divide the number of slices classified
as best-guess by the total number of slices in that transmission
to obtain the Correct Slice Ratio for that test transmission.

var2
n—2%0

varl
n—o

min
min(X)

Notation | avg
Function m

TABLE II: Statistic functions used to calculate Threshold 1,
Threshold 2, and Metric 1.

IV. PERFORMANCE EVALUATION

In this section, first, we show UAV classification results
where the CNNs are trained and tested on separate partitions of
the dataset of seven UAVs. Next, we show new UAV detection
results where the CNN is trained on six of the UAVs. The
new device detection algorithm distinguishes the seventh (new)
UAV from the rest.

A. UAV Classification

We use our dataset (Section II) to explore the effects of
each architecture, mobility scenarios, and individual UAVs, on
the NN pipelines in order to understand the impact of each.
As described in Sections II and III, we partition our dataset
consisting of seven UAVs in four mobility-based scenarios into
training (70%), validation (10%), and test (20%) sets. We train
both the AlexNetlD and AlexNetl1D-lite architectures with the
training sets for a maximum of 30 epochs and use a batch_size
of 512 and a slice_size of 256. When the architectures are fully
trained, we test each architecture with the test set and obtain the
slice and transmission accuracies. To show the impact of the
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Fig. 3: Testing different premises: (a) AlexNetlD model, (b)
AlexNet1D-lite model, (c) AlexNet1D model, training on stationary
scenarios, testing on motion scenarios, (d) AlexNet1D model,
training on motion scenarios, testing on stationary scenarios, (e)
AlexNet1D model, No DJI Mavic Air 2 UAV, (f) AlexNet1D
model, No Skydio 2 UAV

Premi Slice Transmission
remise Accuracy (%) | Accuracy (%)
a) AlexNetlD 94.52 96.28
b) AlexNet1D-lite 92.02 93.64
c) Tran}lng on stat'lonary, 7374 8022
testing on motion
d) Tr.alnmg on motlon, 88.29 96.04
testing on stationary
e) No DJI Mavic Air 2 97.66 98.85
f) No Skydio 2 94.20 96.11

TABLE III: Slice and transmission accuracies for each premise.

aforementioned effects, we construct specific premises listed
in Fig. 3 and Tab. III and show the slice and transmission
accuracies for each premise.

To further explain these results, we group together sets of two
premises at a time to contrast their results. In the first group, we
test the effects of the NN architecture with (a) the AlexNetlD
architecture and (b) the AlexNetlD-lite architecture. Overall,
the AlexNetlD model performed slightly better with a (slice
accuracy, transmission accuracy) of (94.52%, 96.28%) across
all scenarios and UAV models. This demonstrates that although
the more complex AlexNetlD model yields a higher accuracy,
the AlexNetlD-lite model, with 94% fewer parameters, was
able to perform adequately (92.02%, 93.64%), losing only up
to 3% classification accuracy in both slice and transmission
accuracy.

In the second group, we test the effects of mobility scenarios
on classification, which is one of the main focuses of this paper.
By (c) training on stationary scenarios only and testing on all
motion scenarios and then (d) training on all motion scenarios
and only testing on stationary scenarios with the AlexNet1D
model, we demonstrate that UAV mobility has an impact
on classification accuracy with (c) having (73.74%, 80.22%)
and (d) having (88.29%, 96.04%). These ~16% decreases
is explained by the robustness of the signals in the variety
of motion scenarios; even though the number of samples for
stationary and all motion scenarios are approximately equal,
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Fig. 4: New UAV detection results for: (1) DJI Mavic Air 2, varl
method; (2) Skydio 2, varl method; (3) Skydio 2, avg method; (4)
Skydio 2, min method; (5) Skydio 2, var2 method; (6) Skydio 2,
varl method; (7) Skydio 2, varl threshold with var2 metrics

the motion scenarios contain a larger variety, and therefore
influence the i and o for each UAV to a greater degree.

For the last group of two premises, we check to see
if individual UAV models bias the classification results in
preparation for new UAV detection. Therefore, we remove
only the (f) DJI Mavic Air 2 and only the (g) Skydio 2
from the original dataset of seven UAVs, obtaining accuracies
of (f) (97.66%, 98.85%) and (g) (94.20%, 96.11%). As the
accuracies differ by less than 3% for both slice and transmission
accuracy, we can say without loss of generalization that the
individual UAVs do not have a dramatic influence on the overall
classification accuracy.

B. New UAV Detection

We test the new UAV detection algorithm with our dataset
and display the results in Fig. 4. Again, without loss of
generality, we test the algorithm by using the DJI Mavic Air
2 in (1) and the Skydio 2 in (2)-(7) as the new UAV, and by
using the variety of statistics explained in Sec. III. On average,
the algorithm had a 93% accuracy rate in detecting any given
UAV input as coming from an old, ’in-library’ UAV, but only
had a 15% accuracy rate in detecting a new UAV input as new,
with the highest accuracy being 29% for method (7). This large
discrepancy is explained by the similarity of the calculated
thresholds between the old and new UAVs, which would also
explain the high accuracy of correctly classifying old UAVs.

accuracy when training a NN architecture on UAVs in only
stationary scenarios and testing on UAVs in non-stationary
motion scenarios. Furthermore, we test a new UAV detection
algorithm on our collected dataset, which is able to detect
“in-library’ UAVs with an average of 93% accuracy, but is only
able to detect new UAVs with an average of 15% accuracy.
Finally, we proposed possible future directions to increase
robustness of our methods and improve results, including slice
and/or prediction aggregation, weighted predictions, and the
use of a multi-classifier scheme.
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