2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN) | 979-8-3315-2042-7/25/$31.00 ©2025 1IEEE | DOI: 10.1109/ICMLCN64995.2025.11140471

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

UNICORN: URLLC Network Traffic Classification
and OOD Detection for O-RAN

Nasim Soltani”, Dante LoPrioref, Joshua Groen', and Kaushik Chowdhury*

“Electrical and Computer Engineering Department, The University of Texas at Austin, Austin, TX
fElectrical and Computer Engineering Department, Northeastern University, Boston, MA
nasim.soltani @utexas.edu, {lopriore.d, groen.j} @northeastern.edu, kaushik @utexas.edu

Abstract—The promise of Ultra-Reliable Low Latency Com-
munication (URLLC) will transform verticals such as virtual
reality, telesurgery, and tactile Internet among others. There are
subtle differences in resource requirements between applications
within URLLC category that may allow the network to perform
fine-tuned resource allocation to satisfy stringent latency/jitter
constraints. This paper proposes UNICORN, a neural network
(NN)-based approach that aims to classify previously seen as
well as detect new/emerging URLLC applications at the near
real-time Radio access network Intelligence Controller (RIC),
without any interactions from the application layer or from the
user equipment (UE). The core approach leverages standardized
key performance indicators (KPIs) exposed by an Open Radio
Access Network (O-RAN) compliant cellular network stack.
UNICORN is evaluated on a real-world dataset collected from
a commercial cellular network using six URLLC smartphone
applications with network KPIs obtained from a full-stack O-
RAN implementation on the NSF Colosseum emulator. Results
reveal classification accuracy of >96% with upto 88% true
positive out-of-distribution (OOD) detection rate, and per class
false positive rate as low as 8%.

Index Terms—Open RAN, Traffic Classification, URLLC Ap-
plication, OOD Detection, Key Performance Indicator.

I. INTRODUCTION

Ultra-reliable low latency communication (URLLC) will
usher in new interactive experiences for enhanced social
interaction such as the tactile internet, revolutionize gaming
and remote human experiences through virtual reality, as well
as potentially save lives via telesurgery [1]. Each of these
examples requires different latency and jitter thresholds, in
turn requiring the network to provision resources differently
for optimal outcomes [2]. Today there are numerous real-time
applications such as voice calls, video chats, live streaming,
and augmented reality (AR) that fall under the umbrella of
URLLC, and share many common requirements, but are also
sufficiently distinct from each other [3]. Thus, we believe that
a one-size-fits-all approach is not sufficient for the network to
generically support all URLLC applications, as there are con-
siderable risks to over, or worse, under provision resources [4].
Consequently, 5G networks require precise traffic analysis
to design fine-grained network slices optimized for Quality
of Experience (QoE) control and service-specific functions,
which can be aided by machine learning (ML) [5]. In fact,
ML methods are shown to have superior performance over
the non-ML methods for analyzing encrypted traffic [6].

979-8-3315-2042-7/25/$31.00 ©2025 IEEE

7
e T UNICORN | oo
st . 1 XAppat 1 4
€ reliz:\:r;tlir:fr;1 I \ i Near-RTRIC | 8
pp E2 : foootnoon0d x4
A Interface E ID Class 1
R g o ID Class 2 (&
oNB ID Class 5

Fig. 1: The overview of UNICORN deployed as an xApp in
the near-RT RIC, where an NN performs joint URLLC traffic
classification and OOD detection.

e Challenges. There are, however, multiple challenges in
deploying ML for traffic analysis: (i) To prevent numerous
privacy concerns, the ML methods must not require access to
user data. (ii) The ML methods can only be deployed in open
and modular network systems, and their inputs are limited
by the standardized interfaces that the network components
provide. (iii) Despite the considerable recent interest in traffic
analysis using ML in open networks, the previous work focus
on classifying traffic to be a member of a fixed group. To the
best of our knowledge there are no prior work on detecting
new traffic classes that have not been seen during training.

o Proposed Framework. We propose UNICORN that enables
the network to recognize which URLLC application is being
used, while addressing the above challenges point-by-point: (i)
UNICORN performs URLLC traffic analysis using only the
Key Performance Indicators (KPIs) that are queried from the
gNodeB (gNB) without accessing user data. (ii) It runs as an
xApp in the near-Real-Time Radio access network Intelligence
Controller (near-RT RIC) within Open Radio Access Network
(O-RAN) systems [7], [8], and moreover, is able to operate
on the data that the standard E2 interface provides (a.k.a.,
KPIs). (iii) It enables distinguishing new URLLC application
classes from the ones that were seen during training. As shown
in Fig. 1, UNICORN consists of a single light-weight neural
network (NN) for joint in-library traffic classification and out-
of-library (i.e., out-of-distribution (OOD)) traffic detection.
UNICORN is evaluated using two different NN architectures
trained and tested on a real-world URLLC dataset collected
using a smartphone running 6 URLLC applications in different
environments and different mobilities. The dataset is next
replayed through the NSF Colosseum emulator [9] as an
O-RAN digital twin, to achieve network KPI traces from

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from |IEEE Xplore. Restrictions apply.

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

an emulated gNB, that are the NN data component in this
paper. UNICORN achieves classification accuracy of >96%
and OOD detection rates of upto 88% as true positive rate
and as low as 8% as per class false positive rate.

Our contributions are as follows:

o We propose UNICORN as a unified pipeline for real-time
URLLC in-library traffic classification and out-of-library
detection that can be deployed as an xApp in the near-
RT RIC within O-RAN. UNICORN finds the traffic class
using network KPIs without accessing the user data.

« For detecting out-of-library URLLC traffic, we propose a
novel non-parameteric OOD detection algorithm based
on K-nearest neighbor (KNN) algorithm, that extracts
features out of a hidden layer of the NN, characterizes in-
distribution (ID) clusters, uses distances of test features
from cluster centers, and relies on independent votes from
K neighbors for ID/OOD decision.

o To evaluate UNICORN, we create a real-world dataset
by collecting URLLC traces using a smartphone and
generating network KPIs using Colosseum. The dataset is
unique as it is the first dataset consisting of traffic traces
collected during 42+ hours of interactive operation with 6
different URLLC applications in 3 different environments
with different mobility scenarios. Another unique aspect
is that the dataset comprises raw network traces collected
from a smartphone that are not used in this paper, as
well as network KPIs collected from Colosseum that are
used in this paper as inputs to the NN model for URLLC
application classification and OOD detection. We pub-
licly share the URLLC dataset and Colosseum-generated
KPIs [10], as well as the python source code [11] used
to implement UNICORN.

II. RELATED WORK

The work related to the scope of this paper can be classified
into two main categories: work on traffic classification, and
work that address discovering new classes.

Traffic Classification. Authors in [12] predict the slice classes
of eMBB, mMTC, URLLC, and master slices to keep track of
network load on each particular slice and allocate the less busy
slices to the incoming traffic. Authors in [13] classify traffic to
analyze slice congestion level and reallocate network slices. In
the realm of traffic classification in O-RAN systems, where the
KPIs are accessed instead of the user data-plane, authors in [7]
propose a traffic analysis framework that consists of a traffic
generator tool along with a simple CNN to classify slices
of O-RAN traces into eMBB, mMTC, URLLC, and CTRL
categories. Authors in [8] propose leveraging transformers
for traffic classification and demonstrate they have better
capabilities in learning temporal properties of O-RAN traces
compared to simple CNNSs. To the best of our knowledge, there
is no previous work on classifying traffic within the URLLC
type in O-RAN.

Discovering New Classes (i.e., OOD data). OOD detection
is a well investigated topic in ML [14], [15]. In wireless
communications, authors in [16] train a feature extractor with

triplet loss and use KNN algorithm to detect OOD devices
for RF fingerprinting, by comparing the distances of the test
point from the nearest neighbors and the nearest neighbors
from each other. Specifically in the realm of network traffic
analysis, authors in [17] propose a feature-based method for
OOD detection on mobile encrypted data, using a Long Short-
Term Memory (LSTM) model for feature extraction. They
obtain principal and residual principal components through
Principal Component Analysis (PCA) and construct an OOD
score to quantify deviation from the ID dataset. Authors in [18]
propose a few-shot learning framework for traffic classification
and OOD detection. They adopt the idea of Siamese networks,
integrate it into the meta-learning framework, and use margin
loss for detecting OOD data. To the best of our knowledge,
there is no previous work on detecting OOD traffic through
processing network KPIs in O-RAN.

III. DATASET COLLECTION AND KPI GENERATION

The procedure of collecting our dataset and generating KPIs
has 3 steps: (i) 5G traffic capture, (ii) traffic emulation, and
(iii) KPI capture, that are described in details in the following.
(i) 5G Traffic Capture. We capture 5G network traffic
using a COTS Google Pixel 6a smartphone using PCAPdroid
application, an open-source tool for capturing and analyzing
network traffic on Android devices [19]. We collect URLLC
traces from six different smartphone applications: Call of
Duty, Twitch, Zoom, Microsoft Teams, Facebook, and Google
Meet. We run the applications sequentially and record 5 to 10
minute traces per application in three different environments
of indoor stationary, outdoor stationary, and outdoor walking.
We gather 492 total traces over 42 hours of interaction with
the six smartphone applications during several days, capturing
different wireless channel conditions in each environment. The
network traffic trace is initially saved on the smartphone in
.pcap format. PCAPdroid provides a custom trailer that adds
metadata associating an application label with each packet
capture. Subsequently, the data is preprocessed to keep only
the relevant meta-data (App name, packet number, time, source
IP, destination IP, protocol, and packet length) and is saved as
a .csv file.

(ii) Traffic Emulation. For traffic emulation, we use Colos-
seum [20] as an O-RAN digital twin [9] to replay the collected
5G traffic between an emulated User Equipment (UE) and
a gNB. We use TRACTOR framework [7] to replicate the
timing, length, and direction of all data sent between the UE
and gNB, while anonymizing the payload within our experi-
mental test bed. Furthermore, the O-RAN test bed simulates
the channel conditions between the gNB and the UE based
on measured conditions from a cellular system deployed in
the real world. This setup enables us to accurately capture O-
RAN KPIs and emulate the original communication in real
time within our test bed.

(iii) KPI Capture. During replaying the traffic in the O-
RAN test bed, we record all of the available KPIs and store
them in a .csv file. Our O-RAN setup provides access

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from |IEEE Xplore. Restrictions apply.

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

Callof Duty ~ Twitch Zoom Facebook

Fig. 2: Patterns within the 17 KPI traces for 6 different
smartphone application classes in the dataset.

b

One KPI trace with
length A" time samples

Teams
—

17 KPIs

to 31 KPIs, as listed in [21], encompassing various low-
level performance metrics. Before feeding these KPIs into the
NN, we preprocess the data to eliminate KPIs with unique
identifying information and administrative details, including
slice assignments and scheduling policies, to further pro-
tect user privacy [7]. Furthermore, KPIs such as received
signal strength indicator (RSSI) that are missing values in
our Colosseum emulation are removed, thereby reducing
the input dimensions without sacrificing essential informa-
tion. The resulting dataset consists of 17 KPIs, including:
dl_mcs, dl_n_samples, dl_buffer (Bytes), tx_brate downlink,
tx_pkts downlink, dl_cqi, ul_mcs, ul_n_samples, ul_buffer
(Bytes), rx_brate uplink (Mbps), rx_pkts uplink, rx_errors
uplink, ul_sinr, phr, sum_reqsted_prbs, sum_granted_prbs, and
ul_turbo_iters. The collected traces are normalized per-KPI by
bringing all the values to the [0,1] interval and are fed to the
NN for application classification.

The complete KPI dataset, which comprises 492 KPI traces
equally distributed among six distinct application classes,
amounts to 85 MB of data. Each trace is a rectangular matrix
of NV time samples collected from 17 KPIs, with characteristic
patterns of each smartphone application. Fig. 2 displays sec-
tions of processed KPI traces as images with a single channel
for six different applications. While some applications exhibit
distinct KPI patterns, others display similarities, and there
are instances where all applications show analogous patterns,
which adds to the difficulty of classification and especially
OOD detection in this dataset. The lengths of the traces vary,
averaging to approximately 1500 time samples per trace.

IV. CLASSIFICATION AND OUT-OF-DISTRIBUTION
DETECTION PIPELINE

In this section, we describe the proposed method for joint
URLLC application classification and OOD detection. We
present a description of the NN architectures along with
training and test processes in Section IV-A, and discuss the
details of the novel OOD detection algorithm in Section IV-B.

A. Neural Network Architectures and Training/Iest Processes

Neural Network Inputs and Outputs. The inputs to the
NN are slices formed from 5G URLLC traces with 17 KPIs,
as described in Section III. Each slice is a rectangle of 64

Classifier

Feature Extractor

L

input size
(1,64,17)

5x5 Conv2D, 32
MaxPool / 2
3x3 Conv2D, 32
MaxPool / 2
DropOut (0.25)
FC, # classes
rossentropy
Loss

A —
x2

ForwConv Model

Feature Extractor
b

Classifier

—

,

input size

(1,64,17)
Ay

7x7 Conv2D, 32
MaxPool / 2
5x5 Conv2D, 32
MaxPool / 3
FC, 128
Dropout (0.25)
FC, # classes

X2

x2
ResConv Model

Fig. 3: ForwConv and ResConv NN architectures with 182k
and 68k parameters, respectively.

consecutive time samples from 17 KPIs structured as input
with dimensions (1, 64, 17). We extract outputs from two
different layers in the NN: (i) Feature vector with size 128
from one of the hidden layers, and (ii) Probability vector with
size number of classes (# classes) from the last layer.

Neural Network Architectures. We design two different
custom NNs each implementing joint classification and OOD
detection pipelines. As shown in Fig. 3, the first NN is a
forward convolutional NN with 182k parameters denoted as
ForwConv, and the second NN is a residual convolutional
network with skip connections and 68k parameters denoted as
ResConv. Each architecture has two main parts, the feature ex-
tractor and classifier, cascaded together. The feature extractor
is mutual between the classification and OOD detection tasks,
and consists of 2D convolutional, MaxPooling and dropout
layers with dimensions specified in Fig. 3. The last layer on
both feature extractors is a tensor of 128 activations. The
classifier module is a series of fully connected (FC) layers
with different sizes and dropout layers. The last layer of the
classifier has size equal to the number of training set classes.
Training Process and Loss Functions. As shown in the top
part of Fig. 4, NN training happens on a per-slice basis, where
one feature vector with size 128 and one probability vector
with size # classes are generated by the feature extractor and
the classifier, respectively, for each input slice in the training
batch. We define two different loss functions for training the
NN as it is used for two different tasks of classification
and OOD detection. As shown in Fig. 3, the first loss, L1,
optimizes the output of the feature extractor. To perform a
successful feature-based OOD detection, the feature vectors
from the inputs of the same class need to fall as close together
as possible in the feature space, and feature vectors from
inputs of different classes need to fall as far from each other
as possible. To satisfy this requirement, we use friplet loss
Sfunction for L,. The second loss, L, is calculated between the
probability vector and the one hot representation of class label
for the classification task, and is hence chosen as categorical
crossentropy loss function. A total loss of L = L1 + Lo is
finally optimized to tune NN parameters through backward

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from IEEE Xplore. Restrictions apply.

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

feature vector
£ =
i 'é’]]S|ice —> probability vector
Kl (# classes)
= :
8 Eg & Decision per subtrace
05

. n =
sz Sll]]] : feature sum vector
== a3 vector (128)
H Bt N0
[2
I chop @

: N y probability sum vector
Subtraces vector (# classes)

Fig. 4: Training and test processes.

propagation.

Test Process. During test, we chop each test trace with length
N time samples to multiple non-overlapping subtraces of
length 200, and then slice the subtrace with a stride of 1 to be
fed to the NN. Each subtrace yields (200-64+1=)137 slices,
and consequently, 137 feature vectors with size 128, and 137
probability vectors with size # classes, after the slices pass
through the NN. We sum the feature vectors yielding from
each subtrace to have a feature sum vector with size 128, and
similarly, sum the probability vectors to have a probability
sum vector with size # classes. To make a prediction for each
subtrace we find the index of the largest value (i.e., arg max)
in the probability sum vector. Furthermore, we use the feature
sum vector to make ID/OOD decision for each subtrace. The
test process is shown in the bottom part of Fig. 4.

B. Out-of-Distribution (OOD) Detection

Here, we describe the details of our novel OOD detection
algorithm that examines the distances of the test feature
from cluster center instead of distances from neighbors. Our
proposed method also uses a different mechanism for taking
votes from neighbors compared to the state-of-the-art [16].
Intuitively, the proposed OOD algorithm is not limited to any
specific density or shape for embedding clusters, as opposed
to measuring distance of test sample from neighbors [16]
that relies on the assumption of dense population around
cluster center and scattered points near the cluster edges. The
proposed OOD detect algorithm spans through pre-deployment
and post-deployment phases, as described in the following.
Pre-deployment: Characterizing ID Clusters. Characteriz-
ing ID clusters happens pre-deployment and after training, by
passing the training set through the trained feature extractor,
collect feature vectors, and calculate feature sum vectors (see
Fig. 4) for different ID classes. In a training dataset containing
J ID classes indexed with 5 = 0,...,J — 1, where each ID
class has subtrace population of N;, feature sum vectors of the
encoder network are denoted as yj(-n) with n =0,...,N; — L.
Each ID cluster needs to be characterized with a center, c;,
that is a vector of size I and a radius, r;, that is a scalar. In
this case, we gather all y;”) vectors belonging to each ID class
J, and calculate a center, c;, for each ID cluster using (1).

1 Nj—l)
Cj=E§yj, j=0,1,.,J—1 (1)

Algorithm 1: Characterizing In-Distribution (ID) Clusters

1: Inputs: Trained encoder network, Training set
containing all ID classes

: Set \ as 95%

: Pass the training set through the trained encoder network
and collect the ID features y§")s

4: center_list , radius_list =[], []

5: for all class j in ID classes do

6 Calculate cluster center c¢; using (1)

7: center_list.append(c;)

8

9

[SSI)

(n)

for all y; s indexed with n belonging to class j do
distance_list = []
10: Calculate Euclidean distance of yj(-n) from its own
cluster center c;
11: Append it as a scalar to distance_list

122 end for

13: Sort the distance_list in the ascending order

14: Discard the last 1 — X and pick the last element as r;
15: radius_list.append(r;)

16: end for

17: Outputs: center_list, radius_list

Equation (1) calculates the I-dimensional mean of all I-
dimensional feature sum vectors within each ID class. To
compute the cluster radius, 75, for each ID class indexed by j
in the training set, we first determine the Euclidean distances
of all feature sum vectors, yﬁ”), from the cluster center, c;, and
sort them in ascending order. Next, we discard the bottom
(1 — X) fraction of the distances, retaining only the top A
fraction. The discarded portion corresponds to feature sum
vectors that are farther from the cluster center, c;. From the
retained portion, the largest value is selected as the cluster
radius, r;. By setting A to a high value, such as 95%, we
ensure that 95% of the ID feature sum vectors have distances
to ¢; smaller than or equal to the cluster radius 7;. In other
words, 95% of the feature sum vectors for each ID class fall
within their respective cluster. The steps for characterizing
each ID cluster with a center and radius are summarized in
Algorithm 1.

As the final step in the pre-deployment phase, we combine
all the ID feature sum vectors from different ID classes into
a set, and fit a KNN algorithm to them using the python API
NearestNeighbors ().

Post-deployment: ID/OOD Decision Making. During the de-
ployment phase, test subtraces from a mixture of ID and OOD
classes are sliced and fed into the NN, their corresponding test
features are generated by the feature extractor, and feature
sum vectors are calculated. For each test feature sum vector
Yeest associated with each test subtrace, we find its K nearest
neighbors among the ID features, as neighbor,s. For each
neighbor, belonging to the ID class j, we find its Euclidean
distance from c;, and denote it as dj. We also calculate the
Euclidean distance of ¥ from c;, and denote it as d,. After
this, we take a vote from each neighbor, on whether g
belongs to an ID class or is OOD. We check two criteria for

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from IEEE Xplore. Restrictions apply.

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

Algorithm 2: Out-of-Distribution (OOD) Detection
1: Inputs: center_list, radius_list, test feature sum vector

Yeest

2: Return K nearest neighbors as neighbor_list =
Ué:ol neighbor,
vote_list = []

3: for neighbor, in neighbor_list do

4: Calculate dj, as Euclidean distance of neighbor,, from

its own cluster center c;

5: Calculate d, as Euclidean distance of g from
neighbor,’s cluster center c;
v, = ID if (dy < di, and d, < r;) else OOD
vote_list.append(vy)

end for

Vanal = 1D if (ID in vote_list) else OOD

10: Output: vgn,

© 2D

the vote of neighbor, denoted as vy, as in (2).

ID if dy <dgand d, <7;
v = . 2
OOD otherwise
We derive a final vote for each y,y using the collective
votes from its K neighbors as in (3).

if any v, = ID, K-1

j1D) k=0,...,
() =
final OOD otherwise

3)

Basically, we identify each test feature as OOD if none of
its nearest neighbors vote it to be ID with respect to their own
ID clusters. The steps to identify each test sample as ID or
OOD are summarized in Algorithm 2.

V. EVALUATIONS

We evaluate UNICORN on two sets of ID/OOD classes:

« First set of classes: Call of Duty, Facebook, Meet, Zoom,
and Twitch as ID classes and Teams as OOD.

o Second set of classes: Call of Duty, Facebook, Meet,
Zoom, and Teams as ID classes and Twitch as OOD.

For each set of classes, we create non-overlapping training,
validation, and test partitions. We select 85% of the ID classes
for training, ~4% for validation, and ~11% for test. We
further expand the test set by adding traces of the OOD class
to it, in a way that all ID and OOD classes in the test set have
equal proportion of traces.

We train ForwConv and ResConv NNs shown in Fig. 3,
on each set of ID/OOD classes, record training and validation
losses, and plot them in Fig. 5. We observe that training loss
is lower in ResConv, however, validation loss is closer to
the training loss in ForwConv, which shows ResConv overfits
to the training set while ForwConv has better generalization
capabilities. After training, we feed the training set in each
set of classes to each trained NN, extract feature vectors,
calculate feature sum vectors, and characterize ID clusters
using Algorithm 1. Then we test the trained models on
a mutual test set consisting of ID and OOD classes with

[— Training Loss

ResConv
First set of Classes

—— Validation Loss]

ResConv
Second set of Classes

ForwConv
Second set of Classes

ForwConv
First set of Classes
0.8

Loss

ol
0

Training Epochs Training Epochs Training Epochs Training Epochs

Fig. 5: Training and validation losses for two sets of classes,
with ForwConv and ResConv NNs shown in Fig. 3.

ForwConv ForwConv
First Set of Classes Second Set of Classes
100 100

CallofDuty gi8l§ 0 0 0 0 g 0 0 0 2
80 80
OEEl2 0 0
60 60
2 2 0 2
40 40
2 0 2 3
20 20
000 0
0 [

Facebook{ 0 |El 2 0 2
P& £ & 2\;& 06\ &

ResConv
First Set of Classes
100

ResConv
Second Set of Classes

True label

Predicted label Predicted label Predicted label

o

redicted label

Fig. 6: Confusion matrices for two different sets of ID classes,
with ForwConv and ResConv NNs shown in Fig. 3.

balanced trace populations, and extract probability vectors
and feature vectors out of the last and second to last layers,
respectively. We calculate probability sum and feature sum
vectors as shown in Fig. 4.

Classification Accuracy. We obtain predicted labels by per-
forming argmax on probability sum vectors. We compare
predicted labels with true labels to find the correct predictions,
and define accuracy as the number of correct predictions,
divided by the total number of predictions. We plot confusion
matrices for ForwConv and ResConv trained with two different
sets of ID classes in Fig. 6. We observe a near perfect
classification accuracy of 96+% for all trained models.

OOD Detection Rate. To visualize the multi-dimensional
clusters discussed in Section IV-B, we collect probability sum
vectors (shown in Fig. 4) from different ID and OOD classes
in the test set, and pass them through t-SNE [22] to reduce
their dimensions to 2 and make them visualizable. We plot the
2D clusters in Fig. 7, for ForwConv and ResConv NNs and
two different sets of ID/OOD classes. For the second set of
classes with Twitch as OOD, we observe that ID and OOD
clusters are well separated from each other for both NN.
However, with the first set of classes with Teams as OOD,
we see that OOD test points are only fairly separate from
the ID clusters. Moreover, after comparing ForwConv and
ResConv plots, ForwConv (i.e., the larger NN) shows better
cluster separation for both OOD classes, and consequently, we
expect it to yield a larger OOD detection rate.

We make ID/OOD decision for each test subtrace by passing
the corresponding probability sum vector through Algorithm 2.
We define OOD detection rate for each class as the ratio
of subtraces detected as OOD divided by the total number
of subtraces for that class in the test set. Accordingly, we
calculate OOD detection rate for all of the classes, regardless
of being ID or OOD, in each of the experiments shown in
Fig. 7, by setting nearest neighbor K as 5, 10, and 15, and
plot them in Fig. 8. We observe that within each NN, Twitch
as OOD is showing higher OOD detection rate compared to
Teams as OOD, and within each set of classes, ForwConv

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from IEEE Xplore. Restrictions apply.

2025 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

ForwConv ResConv
| ™ d e Call of Duty (ID)
- $ N Y 0\? e Facebook (ID)
89 |m h 5 K “We| °© Meet(D)
B 8 L4 L) Zoom (ID)
iT 5 ! R Teams (OOD)
| “Q e Twitch (ID)
-y 1 e Call of Duty (ID)
g 9 ® dt‘ R 4 e Facebook (ID)
g 2 ¥ | o Meet(p)
co - 1 Py Zoom (ID;
SO ?‘! s (ID)
Q= Teams (ID)
n © & -
ke o e Twitch (OOD)
Se b d

Fig. 7: 2D clusters for two different sets of ID/OOD classes
and ForwConv and ResConv NNs shown in Fig. 3.

g
=)

0.75 ¥

ForwConv
00D Detection
Rate
o
n

in]

0.25{x g o H] The [

o 10 o ([0 O e) | e Tie U0 V1 Ui
g 10 — [ks
>E 075 B k=10
L§§§ 0.5 } B k=15

25 oasip [s N N N

8, Lrm i (Ml (1 () T T UM (]

NI ° S & &
é@"})oo e ¢°°i ®"§>@& & éo\i Ry mooé‘/\&é‘:{%,\
d}\ & & (;&\ @ &

(a) First Set of Classes (b) Second Set of Classes

Fig. 8: OOD detection rate for (a) First set of classes and (b)
Second set of classes for NNs shown in Fig. 3.

shows higher true positive OOD detection rate and overall
lower false positives, which are both consistent with our
observations in Fig. 7. We also observe that increasing K from
5 to 15 decreases both true and false positive rates, however,
it has a greater impact on the false positive rate (i.e., OOD
detection rate for ID classes). With ForwConv, and K=15, we
observe true positive OOD detection rate of 88% for Twitch,
and per class false positive rate as low as 8%.

VI. CONCLUSION

In this paper, we proposed UNICORN as a framework for
joint URLLC network traffic classification and OOD detection
within O-RAN systems. We described our real-world KPI
trace dataset collected from a commercial cellular network
using 6 smartphone applications with URLLC traffic type. We
presented the details of the proposed NN-based classification
and OOD detection methods that run as an xApp in the near-
RT RIC. We evaluated UNICORN on two sets of ID/OOD
classes, using two different custom NN architectures named as
ForwConv and ResConv. We showed 96+% average accuracy
in classifying 5 URLLC applications. Furthermore, we showed
superior performance of ForwConv over ResConv in OOD
detection by yielding upto 88% true positive OOD detection
rate with false positive rate as low as 8%.

ACKNOWLEDGMENT

This work has been supported by NSF grants CNS 2229444
and CIRC 2120447.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

REFERENCES

M. E. Haque, F. Tarig, M. R. Khandaker, K.-K. Wong, and Y. Zhang, “A
survey of scheduling in 5g urllc and outlook for emerging 6g systems,”
IEEE access, vol. 11, pp. 34372-34396, 2023.

R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “URLLC for
5G and Beyond: Requirements, Enabling Incumbent Technologies and
Network Intelligence,” IEEE Access, vol. 9, pp. 67064—-67095, 2021.
M. Alrabeiah, U. Demirhan, A. Hredzak, and A. Alkhateeb, “Vision
aided URLL communications: Proactive service identification and co-
existence,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers, pp. 174-178, IEEE, 2020.

Z.Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5G URLLC: De-
sign challenges and system concepts,” in /5th international symposium
on wireless communication systems (ISWCS), pp. 1-6, IEEE, 2018.

C. Gijén, M. Toril, M. Solera, S. Luna-Ramirez, and L. R. Jiménez,
“Encrypted traffic classification based on unsupervised learning in cel-
lular radio access networks,” IEEE Access, vol. 8, pp. 167252-167263,
2020.

T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” IEEE communications
surveys & tutorials, vol. 10, no. 4, pp. 56-76, 2008.

J. Groen, M. Belgiovine, U. Demir, B. Kim, and K. Chowdhury,
“Tractor: Traffic analysis and classification tool for open ran,” in ICC
2024 - IEEE International Conference on Communications, 2024.

M. Belgiovine, J. Gu, J. Groen, M. Sirera, U. Demir, and K. Chowdhury,
“Megatron: Machine learning in 5g with analysis of traffic in open
radio access networks,” in International Conference on Computing,
Networking and Communications (ICNC), 2024.

M. Polese, L. Bonati, S. D’Oro, P. Johari, D. Villa, S. Velumani, R. Gan-
gula, M. Tsampazi, C. P. Robinson, G. Gemmi, et al., “Colosseum: The
Open RAN Digital Twin,” arXiv preprint arXiv:2404.17317, 2024.

Nasim Soltani, Dante LoPriore, “UNICORN Dataset.” https://
genesys-lab.org/unicorn.
Nasim Soltani, “UNICORN Repository.” https://github.com/
nasimsoltani/unicorn.

A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “DeepSlice:
A deep learning approach towards an efficient and reliable network
slicing in 5G networks,” in 2019 IEEE 10th Annual Ubiquitous Com-
puting, Electronics & Mobile Communication Conference (UEMCON),
pp- 0762-0767, IEEE, 2019.

M. S. Abood, H. Wang, D. He, M. Fathy, S. A. Rashid, M. Alibakhshike-
nari, B. S. Virdee, S. Khan, G. Pau, I. Dayoub, et al., “An LSTM-based
network slicing classification future predictive framework for optimized
resource allocation in C-V2X,” IEEE Access, vol. 11, pp. 129300—
129310, 2023.

J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized Out-of-Distribution
Detection: A Survey,” arXiv preprint arXiv:2110.11334, 2021.

J. Zhang, J. Yang, P. Wang, H. Wang, Y. Lin, H. Zhang, Y. Sun, X. Du,
K. Zhou, W. Zhang, et al., “OpenOOD v1.5: Enhanced Benchmark for
Out-of-Distribution Detection,” arXiv preprint arXiv:2306.09301, 2023.
G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards Scal-
able and Channel-Robust Radio Frequency Fingerprint Identification
for LoRa,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 774-787, 2022.

Y. Tong, Y. Chen, G. B. Hwee, Q. Cao, S. G. Razul, and Z. Lin, “A
Method for Out-of-Distribution Detection in Encrypted Mobile Traffic
Classification,” in 2024 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1-5, IEEE, 2024.

G. Miao, G. Wu, Z. Zhang, Y. Tong, and B. Lu, “SPN: A Method of Few-
shot Traffic Classification with Out-Of-Distribution Detection Based on
Siamese Prototypical Network,” IEEE Access, 2023.

PCAPdroid, “Open source PCAPdroid.” https://github.com/emanuele-f/
PCAPdroid.

L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, et al., “Colos-
seum: Large-scale wireless experimentation through hardware-in-the-
loop network emulation,” in 2021 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN), pp. 105-113, IEEE,
2021.

Joshua Groen, Mauro Belgiovine, “TRACTOR Repository.” https://
github.com/genesys-neu/TRACTOR.

L. Van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, 2008.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 21,2025 at 18:18:42 UTC from IEEE Xplore. Restrictions apply.

