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Abstract— Creating a digital world that closely mimics the
real world with its many complex interactions and outcomes
is possible today through advanced emulation software and
ubiquitous computing power. Such a software-based emulation
of an entity that exists in the real world is called a ‘digital twin’.
In this paper, we consider a twin of a wireless millimeter-wave
band radio that is mounted on a vehicle and show how it speeds
up directional beam selection in mobile environments. To achieve
this, we go beyond instantiating a single twin and propose
the ‘Multiverse’ paradigm, with several possible digital twins
attempting to capture the real world at different levels of fidelity.
Towards this goal, this paper describes (i) a decision strategy at
the vehicle that determines which twin must be used given the
latency limitation, and (ii) a self-learning scheme that uses the
Multiverse-guided beam outcomes to enhance DL-based decision-
making in the real world over time. Our work is distinguished
from prior works as follows: First, we use a publicly available
RF dataset collected from an autonomous car for creating
different twins. Second, we present a framework with continuous
interaction between the real world and Multiverse of twins at the
edge, as opposed to a one-time emulation that is completed prior
to actual deployment. Results reveal that Multiverse offers up
to 79.43% and 85.22% top-10 beam selection accuracy for
LOS and NLOS scenarios, respectively. Moreover, we observe
67.70−90.79% improvement in beam selection time compared
to 802.11ad standard and 5G-NR standards.

Index Terms— Digital twin, multiverse, millimeter-wave, beam
selection, autonomous cars.

I. INTRODUCTION

ADIGITAL twin is a software-based emulation of a phys-
ical entity that captures its real world properties and

interactions in the environment in which it operates [1]. Thus,
it allows tracking the state-changes of the real entity over time
and also studying the impact of any configuration settings in a
safe, digital environment. In wireless communication domain,
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Fig. 1. Overview of the proposed framework. The sensors on the vehicle
capture the state of the real world. They may use this local information and DL
models to choose a beam directly or invoke a twin from the Multiverse. Each
twin offers a distinct fidelity of emulation through ray tracing and incurs a
computation cost for delivering the beam selection results back to the vehicle.

digital twins are used for emulating 5G networks, modeling
wireless channels, validation, and optimization [2]. However,
recent examples of such twins rely on one specific realization
of the twin in the digital domain [3]. The rich diversity in edge
computing-enabled wireless network infrastructures raises an
intriguing possibility: What if there are ‘multiple such twins’,
with each twin capturing the real world wireless channel and
signal propagation with a different level of fidelity. In this
paper, we introduce the novel paradigm of the Multiverse of
twins, where the goal is to define an analytical method that
allows the system to select one of multiple candidate twins,
according to the computation and latency constraints.

A. Deep Learning for Beamforming in Seen Scenarios
As shown in Fig. 1, our use case involves selecting one of

several directional beams in the millimeter-wave (mmWave)
band to establish connectivity between an autonomous car
and a roadside base station (BS). These directional beams are
available at the BS and enable Gbps downlink transmission to
the vehicles, which have quasi-omni-directional antenna set-
ting. Vehicle-mounted sensors, e.g., camera, GPS, and LiDAR
are used to obtain contextual information about the environ-
ment [4], [5], [6]. In recent works [7], [8], we have studied
deep learning (DL) models with convolutional neural networks
(CNNs) to fuse available multimodal sensor data and predict
the best beam at the BS. This considerably shortens the time
by 52.75% and 95% compared to the conventional exhaustive-
sweeping approach, defined in the 802.11ad and 5G-NR
standards, respectively. However, a challenge arises when the
DL model needs to perform in test environments that it has
not encountered previously during training [9] (an unseen
scenario), a new street or temporary obstruction, for example.
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Such situations result in unpredictable wireless propagation
conditions (∼ 73% drop in prediction accuracy according to
our experiments) that cannot be fully characterized without
new RF information.

B. Multiverse at Edge for Beamforming in Unseen Scenarios
We propose the Multiverse a software-based paradigm that

runs ray tracing to emulate the RF propagation patterns,
in unseen environments. This has the potential to replace–and
correct–erroneous DL predictions, while still avoiding the
latency of exhaustive sweep, defined by the standards. In the
Multiverse, several twins, each offering a different level of
fidelity and associated computation cost, coexists and ray
tracing emulation is performed for all of them and each unseen
scenario. The emulation cost of each twin increases with its
level of fidelity. Thus, the accuracy of emulating ‘reality’
is determined by the available computational resources at
the edge, such as whether having access to a CPU unit,
commercial grade GPUs, or a GPU farm. On the other hand,
depending on wireless latency constraints, choosing a twin
with lower complexity may be favored. Our framework is apt
for exploring this accuracy-latency trade-off by selecting a
twin from the ‘Multiverse’ and set of Top-K beam recom-
mendations within the selected twin, according to the user
defined latency constraint. Moreover, the ray tracing outputs
from the Multiverse can also generate a labeled data point
for continuous learning of the DL models at the vehicle.
Ultimately, the prediction of the twin must be timely (i.e.,
the vehicle can use its prediction before it speeds away) and
accurate (i.e., close to exhaustive search). Taken together,
the main challenges involve (i) detecting seen and unseen
scenarios locally at the vehicle, (ii) choosing one of the
twins from the Multiverse in an unseen scenario based on
the latency constraint, (iii) ensuring the complete cycle of
query-compute-response can be completed in less time than
performing exhaustive search locally.

C. Overview of the Proposed Framework
In our proposed framework, the vehicle first detects if it

encountered a seen or unseen scenario. In a seen scenario,
the vehicle predicts the beam locally using DL-based method
and there is no need to invoke any twin from the Multiverse.
In an unseen scenario, e.g., a blockage of certain dimensions
that was not included in the training data for DL-based
method, we use the Multiverse for beamforming instead. Upon
triggering the Multiverse, if the unseen environment is not
included in the Multiverse of twins, the vehicle relays the
sensor data to setup a digital replica in the ray tracing tool
Wireless InSite [10] that models the geographical location
of the car, dimension and placement of the obstacles, twin-
specific antenna models, and multipath emulation settings.
At the end of this step, lookup tables are generated and added
to the Multiverse of twins to be used by upcoming vehicles
later. These look up tables include information about the loca-
tions of the receiver (Rx) and signal-to-noise-ratio (SNR) of
all beams obtained by ray tracing. In the next step, a decision
strategy at the Multiverse identifies (a) which of the twins
from the Multiverse must be used, and (b) what is the optimum
subset of beams for the selected twin, according to the latency
constraint. The candidate top-K beams are then swept by the
BS to identify the optimum beam and start the transmission.
Finally, the ray tracing outputs from the Multiverse are paired

with the local sensor data to fine-tune the DL model at the
vehicle for the future.

D. Summary of Contributions
Our main contributions are as follows:
• We propose the Multiverse paradigm, where different

twins emulate the real world with varying levels of
fidelity. We propose an optimization algorithm that takes
into account the fidelity of the twins and user-defined
latency constraint to automatically select the optimum
twin from the Multiverse and associated top-K beams
in a case-by-case basis. This algorithm is executed at
the Multiverse with complexity O(NB), where N is the
number of twins in the Multiverse and B is the number
of beams in the codebook.

• We propose to leverage the ray tracing outputs from the
Multiverse to generalize the real world DL models to
unseen environments, in actual deployment conditions.
Thus, the labels from the Multiverse and real world sensor
data are paired to fine-tune the local DL model. We
observe > 96% accuracy, while fine-tuning the local DL
model with a regression loss.

• We rigorously evaluate the Multiverse paradigm and
how well a twin’s predictions match with the ground-
truth, using a publicly available real world dataset [11]
for vehicle-to-infrastructure (V2I) communication. Our
results reveal that the Multiverse offers up to 79.43%
and 85.22% top-10 beam selection accuracy for Line-
of-Sight (LOS) and non-Line-of-Sight (NLOS) scenarios,
respectively. Finally, we demonstrate that the Multiverse
decreases the beam selection overhead by 67.70−90.79%
compared to exhaustive search method proposed by the
state-of-the-art 802.11ad and 5G-NR standards.

• We publish the first-of-its-kind dataset and simulation
code for the Multiverse with precise maps, experimentally
measured antenna patterns, and building materials using
the Wireless InSite [10] software in [12]. We provide APIs
to interface the Wireless InSite software framework with
our previously released FLASH dataset [11] obtained
from a sensor-equipped Lincoln MKZ autonomous car.

II. RELATED WORK

In this section, we first survey the state-of-the-art deep
learning methods for unseen scenarios. We then summarize
the related work on digital twins within the wireless domain,
as the main focus of this paper.

A. Deep Learning Methods for Unseen Scenarios
Invariant learning refers to a class of methods developed

to address distribution shifts with the goal of obtaining a
generalizable predictor over different environments or sce-
narios [13]. These methods posit that features are drawn
from multiple distributions, but the relationship between label
and features is invariant across environments [14], [15]. The
incentive is that if a predictor is optimal across many envi-
ronments seen during training, then it will generalize better
to future unseen environments [16]. However, achieving true
invariance (generalizing to any arbitrary distribution) is still a
challenging open problem, and the state-of-the-art methods are
often studied under restrictive assumptions such as linearity of
the data generative process and access to many environments
in the training phase. Another research area that comes close
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to our setting is out-of-distribution (OOD) learning. In the
machine learning literature, the distribution refers to “label
distribution”, which means that OOD samples should not
have overlapping labels with respect to the training data [17].
However, in our setting the labels are the same across different
scenarios and the OOD setting is not applicable. Another pos-
sible approach is transfer learning, which we were extensively
explored in our prior work [6]. However, these method requires
training labels from the unseen scenarios to fine-tune and
adapt the models, whereas in Multiverse we do not consider
such an assumption. Similarly, Meta-learning, or “learning to
learn” [18], aims to extract information from a set of observed
tasks that enables fast adaptation to new tasks (thus also
referred as multi-task learning), with only a small amount of
samples and computation available for adaptation [19]. Meta-
learning approaches span a variety of topics such as learning
an initialization for gradient-based learning algorithms [20],
[21], [22], [23] and finding a low-dimensional subspace to
fine-tune model parameters [24], [25]. However, they either
target generalization to new classes not seen in the training
set or require training labels from unseen scenarios [26]; thus,
out of scope for this work.

B. Digital Twin for Optimization

Dong et al. [27] train a DL model for base station and
user association to optimize the energy consumption. The DL
model is periodically updated in the digital twin, using the
information flow from the real world. Similarly, Lu et al. [28]
formulates how to set up a digital twin in a mobile network
via reinforcement and transfer learning in order to ensure
connectivity with low computation latency. Sun et al. [29]
propose a lightweight digital twin framework within a network
of UAVs, which performs energy-efficient UAV placement
with the objective of establishing connectivity with ground
units in emergency situations. Boas et al. [30] propose to use
a two-stage deep learning scheme and digital twin for channel
state information (CSI) estimation. The authors use untrained
neural networks (UNNs) to learn the CSI, which is then fed
into a conditional generative adversarial networks (cGAN) to
create the corresponding digital world. After this step, their
framework only needs the node locations to generate CSI.

C. Digital Twin for Beamforming

Li et al. [31] use digital twin to generate training data
for channel estimation, which is important in beamforming.
The emulated 5G complaint data is used to train a deep
generative model that predicts the channel using only the
precoder matrix indicator (PMI). Zeulin et al. [32] use
digital twin to generate training data (channel map) through
a ray tracing simulator in mmWave band. They then train a
model to a predict subset of candidate AoA/AoD options. The
success measure of their Machine Learning (ML) model is
the probability of capturing half-power beamwidth and error in
AoA. Cui et al. [33] utilize digital twins for beamforming with
the assitance of Reconfigurable Intelligence Surfaces (RIS).
They jointly optimize user association and power allocation
by running a deep reinforcement learning (DRL) at the twin.
The success of their eventual goal, i.e. maximizing sum-rate
of uplink in the user-centric cell-free systems, is demonstrated
in simulation.

TABLE I
NOTATION SUMMARY

Novelty of the Multiverse: In summary, the state-of-the-
art work concerning digital twin in wireless applications is
based on simulation alone. Also, to the best of our knowledge,
current wireless digital twin models are applicable for sta-
tionary or pedestrian-speed mobility. Our work distinguishes
itself over prior work by: (a) using real data for validation,
(b) including vehicular-mobility components, (c) offering a
Multiverse of twins to choose from, (d) proposing a pioneering
work (to the best of our knowledge) on interactive digital twin
based beam selection in the mmWave band. Also, unlike prior
work, we pledge to release datasets and software APIs for
rigorous validation by other researchers.

III. SYSTEM ARCHITECTURE

In this section, we first review classical beam initialization
and formally present the beam selection problem. We then
introduce the system architecture in our framework that
exploits the DL-based method for seen and Multiverse for
unseen scenarios (see Fig. 1). We summarize the notations
in Tab. I.

A. Traditional Beam Initialization
The 802.11ad and 5G-NR standards use exhaustive search

for beamforming wherein the transmitter (Tx) sends out probe
frames in all beams sequentially and the receiver (Rx) lis-
tens to these frames with a quasi-omni-directional antenna
setting [34]. This process is then repeated with the Tx-Rx roles
reversed. Assume the Tx has a pre-defined codebook CTx =
{t1, · · · , tB}, consisting of B elements. After transmitting B
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probe frames, the beam with the maximum signal strength
is chosen as optimal. Formally, the optimal beam at Tx is
calculated as:

t∗ = arg max
1≤m≤B

ptm , (1)

where ptm is the received signal strength at the Rx, when the
transmitter uses beam tm. The exhaustive search methods are
slow and particularly impractical in a V2X scenarios, where
the optimal beam changes rapidly, due to mobility.

B. DL-Based Prediction at Vehicle and Multiverse at Edge
The RF propagation pattern in the mmWave band is affected

by factors such as the positioning of the transmitter and
receiver, atmospheric features, and presence of obstacles spe-
cially the ones that block the LOS. As a result, in dynamic sce-
narios such as vehicular networks, the RF profiles continuously
change over time which makes the DL-based methods prone to
faulty predictions in unseen scenarios. Thus, we propose an
interactive Multiverse-based solution, where the vehicle: (a)
recognizes the unseen scenarios locally; (b) invokes a twin in
the Multiverse for beam selection; (c) uses emulation outputs
for fine-tuning the local DL models. Our proposed frameworks
runs by coordination between the DL-based beam selection
and Multiverse and has three main thrusts as follows:
• Beam Selection using DL-based framework: While

encountering a seen scenario, we use the DL-based beam
selection that exploits the local sensor data at the vehicle
to predict the optimum beam (see Sec. IV-A).

• Beam Selection using Multiverse at Edge: We use
the Multiverse including twins with different levels of
fidelity and associated computation cost at the edge, for
unseen scenarios. We first create the Multiverse offline
by emulating the propagation patterns using a ray tracing
tool, where we consider different number of reflections
and custom beam patterns. After this offline creation step,
a lookup table is generated for each twin that contains the
SNR of the beams. The vehicles use these look up tables
to choose the optimum twin from the Multiverse and top-
K beams locally, while considering the communication
latency constraint (see Sec. IV-B).

• Fine-Tuning with Multiverse Ground-Truth: We incor-
porate the emulated beams from the Multiverse to label
the sensor data at the vehicle. Thus, we fine-tune the local
model to account for previously unseen scenarios in the
future (see Sec. IV-C).

IV. MULTIVERSE-BASED BEAM SELECTION

In this section, we introduce our mmWave beam selection
framework, consisting of the DL-based prediction at the vehi-
cle and Multiverse at edge. We denote the set of seen (i.e.
labeled) and unseen (i.e. unlabeled) scenarios by {Sl}Ll=1 and
{Su}Uu=1, respectively. Here, Sl and Su are samples from
a total of L and U seen and unseen scenarios, respectively.
When a vehicle comes within the range of Multiverse-enabled
mmWave BS, it (a) uses a local trained DL model that utilizes
multimodal sensor data for seen scenario Sl, and (b) invokes
the Multiverse for unseen scenario Su. Fig. 2 shows the
interactions of real world and Multiverse in our proposed
framework.

A. Beam Selection Using DL-Based Framework
To avoid the costly exhaustive search in traditional beam

selection, one approach is using DL models that predict the

best beam using non-RF multimodal data, such as LiDAR,
camera images, and GPS coordinates [7], [8], [35]. In this
method, a training set is available prior to deployment for seen
environments {Sl}Ll=1. The training data corresponding to the
lth seen scenario includes the multimodal sensor data as well
as the RF ground-truth {(XLiD

l,j , X
Img
l,j , X

Crd
l,j ), Yl,j}nl

j=1. Here,
XLiD
l,j , X

Img
l,j , X

Crd
l,j are LiDAR, image, and GPS coordinate

samples and Yl,j ∈ {0, 1}B is the corresponding label for the
sample j and lth seen scenario. Moreover, nl is the total of
training samples for seen scenario Sl.

The learning model fθ(.) is a function parameterized by θ,
i.e., a neural network with weights θ. The empirical loss of the
model parameters θ on dataset for seen scenario Sl is defined
as L(θ;Sl) := 1

nl

∑nl

j=1[ℓ(fθ(X
LiD
l,j , X

Img
l,j , X

Crd
l,j ), Yl,j)], where

ℓ is a loss function measuring the discrepancy between pre-
dicted and true labels, cross entropy as an instance. The
standard DL training approach finds a model that mini-
mizes the loss across all of the training samples by solving:
min
θ

1
Nl

∑L
l=1 nlL(θ,Sl), with Nl =

∑L
l=1 nl. After the model

training, the best beam is predicted as:

t∗l,j = σ(fθ(XLiD
l,j ,X

Img
l,j ,X

Crd
l,j )), (2)

where σ denotes the softmax activation, XLiD
l,j ,X

Img
l,j , and XCrd

l,j
are test samples from LiDAR, image and coordinate sensors
for sample j and lth seen scenario, respectively.

B. Beam Selection Using Multiverse at Edge
The proposed DL-based beam selection method in Sec. IV-

A exploits the sensor data to predict the optimum beam locally
at the vehicles. However, it fails to provide accurate prediction
for unseen scenarios {Su}Uu=1. In the case of an unseen
scenarios, the Multiverse is triggered to emulate the beam
profiles instead, which operates at the edge. In the Multiverse,
a collection of N digital twins are available with different
levels of fidelity: Mu = {Tu,i}Ni=1 for each unseen scenario
Su. After running the ray tracing emulation, lookup tables
are generated for each twin in the Multiverse, with per-beam
SNRs over different locations on the road. In this section,
we explain how we create the Multiverse of twins at the
edge and present our strategy to determine the optimum twin
from the Multiverse and set of top-K beams according to the
communication latency constraint.

1) Offline Multiverse Creation: The Multiverse creation for
each unseen scenario Su consists of three steps: (a) twin-world
creation (map geometry), (b) modeling the propagation paths
using a ray tracing tool, (c) creation of lookup table. Having a
high fidelity twin of the real world RF propagation patterns is
complex and time intensive. Thus, we assume that creating
the twins is performed offline. Nevertheless, with enough
computation resources, it can be completed in near real-time,
as studies in this direction are under development [36].

Twin-world Creation. In the Multiverse, we consider prop-
erties with respect to map precision, transmitter codebook, and
mmWave propagation properties. While we consider several
key metrics in the Multiverse, our baseline can be extended
in the future to twins that also incorporate weather patterns,
such as the effect of rain/snow. We initialize the ith twin
for unseen scenario Su as Tu,i = ftwin(mapu,Ou, C

Tx
i , ρi)

in the Multiverse. Here, mapu and Ou denote the imported
OpenStreetMap [37] and present structures or obstacles for
unseen scenario Su. Moreover, CTx

i and ρi are transmitter
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Fig. 2. The system model of the proposed Multiverse-based beam selection framework. In the offline Multiverse creation step, we run ray tracing emulation
to obtain the beam profiles for each twin. We report the ray tracing output as a look up table including the, Rx location index, Twin index, and SNR values
for all beams of twin Tu,i over all locations lj ∈ LTu,i

. In the real-time Multiverse interaction, the Multiverse solves Eq. 7 to identify the optimum twin
and subset of K beams from the selected twin.

codebook and number of allowed reflections for ith twin. In our
design, each twin can have a different codebook with Bi beams
for ith twin (|CTx

i | = Bi). We characterize present objects
in the twin with Ou = {(xk, yk, d0,k, d1,k, d2,k)}

N obs
u

k=1, where
N obs
u is the number of structures or obstacles that are present

in the unseen scenario Su and are replicated in the Multiverse.
Moreover, (xk, yk) are the obstacle coordinates on the map,
whereas d0,k, d1,k, d2,k represent the height, width, and length
of the obstacle-k.

Modeling the Propagation Paths. To model the propa-
gation paths in twin Tu,i, we place the receiver at LTu,i

=
{lj}

nTu,i

j=1 different locations on the road and send out mmWave
rays from the BS, where the Tx is located, with ρi reflections
for each location. We then perform the propagation study for
each beam tm ∈ CTx

i at each lj ∈ LTu,i
location.

We follow X3D [10] for modeling the mmWave propagation
path that takes into account the phase information of the rays.
We calculate the total received power, i.e. aggregated power
from individual rays at the Rx, for the Tx beam tm, twin Tu,i,
and location lj as:

pm,ij =
λ2β

8πη0

∣∣∣∣∣∣∣
Nm,i

j∑
n=1

[Eθ,ngθ(θn, ϕn) + Eϕ,ngϕ(θn, ϕn)]

∣∣∣∣∣∣∣
2

,

(3)

where Nm,i
j is the number of total propagation rays delivered

at Rx at location lj for the Tx beam tm and twin Tu,i. Here,
λ is the wavelength, and β is the ratio of the area under
the overlapping frequency spectrum of the transmitted and
received signals to the area under the frequency spectrum
of the transmitted signal [38]. Moreover, Eq. 3, η0 is the
impedance of free space (where η0 = 377Ω), θn and ϕn
represent direction of arrivals, Eθ,n and Eϕ,n are the theta
and phi components of the electric field of the nth ray at
the Rx. Further, gϕ(θ, ϕ) =

√
|Gθ(θ, ϕ)|ejψθ , where Gθ is

the theta component of the receiver antenna gain, and ψθ is
the relative phase of the θ component of the far zone electric
field. From Eq. 3, one can observe that the received power is
square-inversely proportional to the carrier signal frequency,

fc, given that λ = c/fc, c being the speed of light and the
exponent 2 is the path loss exponent for the X3D model, which
is compliant with the latest mmWave measurements in urban
canyon scenarios [39]. This means that the received power,
as well as the range of the signal, depends on the operating fre-
quency of the communication system, i.e. higher the fc faster
the attenuation is, which translates into smaller range and less
received power. Nevertheless, high fc signals bring a high data
rate opportunity, due to the high signal bandwidth, introducing
a trade-off for mobile operators, who can decide based on their
business strategies. There are also studies with WI that involve
higher [40] and lower frequencies [41] than our operating
frequency, 60 GHz. Molecular absorption, which is defined as
atmospheric absorption in WI, is another parameter that affects
the signal propagation, hence the received power. We used the
default atmospheric absorption setting in WI, adapted from the
model in the National Telecommunications and Information
Administration (NTIA) report [42], because WI and beam
decisions show high accuracy as we detail in Sec. VI.

Once the received power is determined (in Watts),
the power in dBm is calculated using pm,ij (dBm) =
10 log10[p

m,i
j (W )] − Ls(dBm), where Ls is any loss in the

system other than path loss, such as within cables and elec-
tronics at the Rx. We calculate the SNR values for the beam
tm ∈ CTx

i at location lj ∈ LTu,i
as SNRm,ij = Pm,ij −N , where

N is the noise power in dBm at location lj for twin Tu,i.
On the other hand, generating a twin Tu,i has an associated
computation cost that is the sum of: (a) cost of generating the
twin-world and (b) cost of the generating propagation rays over
locations on the road and all beams for creating the lookup
table. Thus, the total cost for creating a twin is:

CTu,i

Comp = CTu,i
map + CTu,i

lookup, (4)

where CTu,i
map is the cost to generate/import the maps for

creating the world, and CTu,i

lookup is the cost of running ray
tracing emulation to generate the lookup table, which is further
broken down as CTu,i

lookup = Bi × nTu,i × Cprop(ρi). Here,
Cprop(ρi) is the cost for calculating one propagation ray with
ρi reflections that depends on the available compute resource.
However, following the Wireless InSite manual [38], the cost
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for propagation path calculation depends on four emulation
parameters as:

Cprop(ρi) ∝
(ρi + ι+ 1)!

ι!ρi!
× wζ+1, (5)

where ρi denotes the number of reflections for twin Tu,i.
Moreover, and ι and ζ are the number of transmissions (pen-
etration) through the walls and diffractions, respectively.
Finally, w is the number of reflective surfaces (walls for
example) that are reached by the rays emitted from the Tx
and completely depends on the map geometry.

Creation of Lookup Table. After modeling all the propa-
gation paths for different Rx location in each twin, we create
a lookup table, which is stored at the Multiverse and consists
of four parameters: (a) Rx location index lj ∈ LTu,i , (b) Twin
index Tu,i, and (c) SNR values SNRm,ij for all beams tm ∈ CTx

i
of twin Tu,i over all locations lj ∈ LTu,i , hence represented
as a dictionary: LT (Tu,i) = {(lj , Tu,i,SNRm,ij )}

nTu,i

j=1 . In
Multiverse, it is possible to run ray tracing emulations and
generate the look up tables for different scenarios in advance.
In this case, the Multiverse will have the look up tables
ready, when a new vehicle encountered the same scenario.
However, in this paper, we present Multiverse for mmWave
vehicular networks, which are highly dynamic. Hence, it is
not feasible to predict any possible combination of the Rx, Tx,
and obstacles in advance. Thus, in Multiverse, we detect the
changes in the environment, run the ray tracing emulation, and
generate the look up tables as they occur in the environment,
to account for unpredictability of the inherently dynamic
vehicular environments.

2) Real-Time Multiverse Interaction: In Multiverse, mul-
tiple twins each with a different level of fidelity are avail-
able (Mu = {Tu,i}Ni=1). Whenever an unseen scenario is
encountered, the BS has N twins from which it can select
the top-K beams for sweeping. The selection of top-K beams
depends on the selected twin. For example, a low fidelity twin
may require sweeping 10 beams, while a twin with higher
fidelity may require only 4 beams, at a certain location. Thus,
there is dependency between the selected twin and set of
top-K beams. Moreover, our observations indicate that the
fidelity of the twins depends on the location on the road
in which the receiver is located. For example, in a specific
region, a less complex twin might be superior to a twin with
higher number of reflections. That is because the emulation
parameters such as number of reflections are constant for
each twin in Multiverse, and unnecessary constructive and
destructive interference at the Rx, with a more complex twin,
may result in discrepancy between the emulation and the real
world. Thus, depending on the scenario and region on the road,
a less complex twin might be closer to the real world. Finally,
the permittable latency for each vehicle depends on its targeted
application. For example a vehicle may need critical safety
directions that must be sent with minimum latency, compared
to sending media data that is not time sensitive. In this case,
there is an upper bound on the number of allowed beams,
which effects selecting the optimum twin and set of top-K
beams. In this section, we present an optimization problem
that jointly selects the twin and set of top-K beams for each
region on the road, while a) providing the highest fidelity b)
imposing the minimum communication latency c) accounting
for the communication latency requirement.

Modeling Fidelity (probability of inclusion). A simple
way to model the fidelity is by benchmarking the performance
of each twin with respect to the ground-truth from the so
far seen scenarios. We define the probability of inclusion
as the probability of the best beam from the ground-truth
being in the top-K predictions from the Multiverse. Our
observations indicate that the probability of inclusion for each
twin is related to the sub-regions in the coverage area of the
transmitter. Moreover, it is affected by the number of allowed
beams K. To that end, we leverage the empirical observations
to model the probability of inclusion as p(K,LT (Tl,i),Sl, r),
where parameters K, LT (Tl,i), Sl, and r denote that number
of selected beams, set of lookup table entries for twin Tl,i, seen
scenarios Sl, and the region in which the receiver is located,
respectively. In other words, we use the seen scenarios to
assess the fidelity of the twins and generate the probability of
inclusion, p(K,LT (Tl,i),Sl, r) at the Multiverse. We then use
the generated probability of inclusion parameter to select the
optimum twin and set of top-K beams in an unseen scenarios.
For example, consider a setting, where we have the LOS and
NLOS scenarios as seen and unseen scenarios, respectively.
Having the LOS scenario as seen indicates that the ground-
truth labels are already available for LOS scenario. In fact,
these ground-truth labels are the ones that are used to train
the DL model, as described in Sec. IV-A. On the other hand,
we run the ray tracing emulation in the Multiverse for the seen
LOS scenario. Given the ground-truth and emulation outputs
for LOS scenario, we compute the probability of inclusion,
p(K,LT (Tl,i),Sl, r), for set of K beams (1 ≤ K ≤ B),
different twins ({Tl,i}Ni=1), and each region of the road (r).
As a result, the dimensionality of the parameter probability of
inclusion equals to B × N × nTu,i , which is available at the
Multiverse.

Modeling Communication Cost. We use the state-of-the-
art 5G-NR standard [43] to model the communication cost for
sweeping the top-K beams as:

C5G-NR(K) = Tp ×
⌊
K − 1

32

⌋
+ Tssb, (6)

In 5G-NR standard, synchronization signal (SS) blocks are
sent in each beam and multiple SS blocks from different
beams are grouped into one SS burst. The NR standard defines
that the SS burst duration (Tssb) is fixed to 5ms, which is
transmitted with a periodicity (Tp) of 20ms [43]. Thus, within
each SS burst the communication time increases linearly, and
there is sudden 20ms increase when the number of beams
exceeds the 32 beams that are allowed in one SS burst.

Optimization. Upon encountering an unseen scenario,
we solve the following optimization problem at the Multiverse
to obtain the optimum twin and set of top-K beams as:

max
K,i

p(K,LT (Tl,i),Sl, r) +
α

2
(1− C5G-NR(K)

CMax
Comm

), (7a)

s.t. C5G-NR(K) < CComm, (7b)

rb ≤ r ≤ re, (7c)
Sl ∈ {Sl}Ll=1, (7d)
α > 0. (7e)

In Eq. 7, the first term in objective forces the optimization
problem to choose twins with higher fidelity (probability of
inclusion). As opposed to this, the second term prevents the
selection of unnecessarily high K values for time sensitive
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applications, by modeling the communication cost to have
an inverse relationship in the objective. Thus, maximizing
the objective in Eq. 7 provides the solution that results in
maximizing the probability of inclusion, while minimizing the
communication cost. Moreover, we note that the maximum
value for the probability of inclusion is equal to one. To ensure
that the two objective elements are within the same range,
we normalize the communication cost by its maximum (CMax

Comm),
which corresponds to sweeping all B beams within the code-
book. The control parameter α in Eq. 7 weights the importance
between these two terms in the objective function. Moreover,
the parameter CComm is the user defined communication
constraints at the vehicle, which applies an upper bound on
the number of allowed beams for time sensitive applications.

To solve Eq. 7, the Multiverse requires four key information
including, the probability of inclusion, communication latency
constraint, and approximate location of the receiver. The prob-
ability of inclusion is computed at the Multiverse from the seen
scenarios as previously described in this section. Moreover,
the communication latency constraint is also known, since
we are considering a downlink channel from the BS (where
the Multiverse is located) to the vehicles. The approximate
location of the receiver can also be estimated by the BS con-
sidering the speed of the vehicle or it can be sent in the uplink
when triggering the Multiverse. The computational complexity
for running this optimization is in the order of O(NB) with
N and B denoting the number of twins and beams in the
codebook. Whenever an unseen scenario is encountered, the
vehicle triggers the Multiverse. The Multiverse solves Eq. 7
as the vehicle enters different regions of the road, or there is
a change in the latency requirement.

After solving Eq. 7, the optimum twin and the associated
top-K beams are determined. Thus, the Multiverse retrieves
the set of top-K beams within the selected twin. The BS
then sweeps through those suggested top-K beams in the real
world, obtains the optimum beam, and starts the transmission.
After identifying the optimal beam, the BS can send a feed-
back (see Fig. 2) to the Multiverse. In Multiverse, we envision
the probability of inclusion as a cumulative metric that is
computed over seen scenarios (up until the present in time)
and continuously updated after receiving the feedback of the
BS on the suggested top-K beams for unseen scenarios. In this
regard, we first run the ray tracing emulation for the unseen
scenarios and generate the look up tables. Given the feedback
from the BS and the look up tables for the unseen scenario,
we update probability of inclusion. Note that this operation
is performed after solving Eq. 7 and returning the top-K
beams to the BS. Thus, running the emulation for the unseen
scenario does not halt the interaction between the real world
and Multiverse. Moreover, the BS feedback can be stored at
the Multiverse to update the probability of inclusion once the
emulation outputs are ready. Overall, we use the ray tracing
output for the unseen scenarios to i) update the probability
of inclusion given the feedback from the BS ii) fine-tune the
local DL model as we will discuss in Sec. IV-C.

C. Fine-Tuning With Multiverse Ground-Truth
When the vehicle uses its local DL models for beam selec-

tion, the local multimodal sensor data is used for inference (see
Sec. IV-A). This results in near-real time prediction of the
beam, due to locality of all actions. However, pure machine
learning-based methods suffer from the adaptation to unseen
environments, which undermines the accuracy of the model
prediction. We propose to incorporate the emulation output

from the Multiverse to fine-tune the local DL model at the
vehicle. Once a twin within the Multiverse is invoked to
obtain the optimal beam, the ray tracing based emulation
outputs become the ground-truth labels and are communicated
back to the real world. We propose to pair these labels with
the local sensor data at the vehicle to fine-tune the local
model, periodically, few epochs of training for example. As a
result, the local model can account for the previously unseen
environment in the future, instead of continuous triggering
of twins from the Multiverse. Following the notations of
Sec. IV-A, the fine-tuned model parameters θ̂ is obtained
by minimizing the loss L(θ̂;Su) on the unseen scenario Su,
where L(θ̂;Su) := 1

nu

∑nu

j=1[ℓ(fθ̂(X
LiD
u,j , X

Img
u,j , X

Crd
u,j ), Yu,j)].

Here, Yu,j is the labels derived from twin Tu,i for unseen
scenario Su (|Yu,j | = nu) and XLiD

u,j , X
Img
u,j , X

Crd
u,j are the real

sensor data recorded at the vehicle. In our system model,
Multiverse suggests a subset of top-K beams for sweeping to
the BS. The BS sweeps through these top-K beams to identify
the best one. In this case, the BS can operate as a safety
mechanism and monitor the performance of the suggested
beam by the Multiverse. For example, if the suggested beams
from the Multiverse result in Gbps throughput, it is likely
that the selected beam is the optimal one. However, if the
throughput is low, it indicates that the emulations are not close
to the real world. In this case, we can discard the emulation
output from the Multiverse, or modify the emulation setting
to obtain a twin with higher fidelity.

Training the DL model requires the sensor data as well as
the labels. In our current vision of Multiverse, the labels are
available after performing the ray tracing, but not the sensor
data. Thus, we proposed to fine-tune the DL model at the
vehicles by pairing the real world sensor data with the labels
from the Multiverse. However, in a future work, one can run
emulation to generate synthetic sensor data along with the ray
tracing to train the DL models and deploy them at the vehicles
for various types of scenarios in advance.

D. End-to-End System
Given a test sample, we first identify if it is either in-

distribution or out-of-distribution, corresponding to seen and
unseen scenarios, respectively. There are state-of-the-art works
where kernel density-based [44], nearest neighbour-based [45],
[46], or reconstruction-based [47] methods are proposed for
identifying unseen scenarios. For example, one of our previous
works [48] focuses on using statistical metrics recorded on the
training data to detect unreliable predictions. This includes
metrics that characterize the prediction probability confidence
and ratio of correctly classified samples for each class, beams
in our case. These statistics are generated at the training phase
and are used as a threshold at inference to identify the outliers.
We denote the outlier detection operation by γ(.).

Consider a test sample with XLiD
m ,XImg

m ,XCrd
m as the LiDAR,

image and coordinate samples, respectively. If the sample is
detected as in-distribution, we use the DL-based method to
locally predict the optimum beam using the sensor data. If the
sample is out-of-distribution, the vehicle submits a request to
get access to the Multiverse of twins and solves Eq. 7 to select
the best twin and top-K beams. Formally,

t∗ =

{
σ(fθ(XLiD

l,m,X
Img
l,m,X

Crd
l,m)) if γ(X{LiD,Img,Crd}

l,m )=DID

Solve Eq. 7 if γ(X{LiD,Img,Crd}
l,m )=DOOD

(8)
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where σ denotes softmax activation, DID implies that the
data sample belongs to the seen scenarios (in-distribution)
and DOOD denotes that γ(.) has identified that the sample
is out-of-distribution (OOD), i.e. unseen scenario. For out-of-
distribution samples, our framework revolves around (i) creat-
ing a Multiverse in the edge server of base station, (ii) solving
Eq. 7 to obtain the optimum twin and set of top-K beams (see
Fig. 2), and (iii) updating the probability of inclusion based
on the feedback from the BS.

The trigger Multiverse module calls for the Multiverse M
from the edge, following Eq. 8. The edge has a few in-library
twins within the Multiverse. This includes the twins that are
encountered before and are already available at the edge. If the
requested twin from the vehicle is already available at the
edge, Multiverse directly moves to solving Eq. 7 and reports
the selected top-K beams within the selected twin to the
BS. If the requested twin is not available, the sensor data
of the vehicle is sent in uplink to the edge, where the ray
tracing tool runs to generate a look up table for the unseen
environment. The output look up table is added to twin family
in the Multiverse. Note that if the requested twin is already
available at the edge, the Multiverse provides an output in
competitive time compared to exhaustive search. If not, the
computationally extensive ray tracing must be run at edge
which might not provide an output in short contact times in
vehicular network. However, the simulation output can be later
used to account for the new vehicles, as they encounter the
same scenario.

V. EXPERIMENT DESIGN

We consider the real world to be a V2I setting in an urban
canyon of a metro city. We deploy the Multiverse using a ray
tracing simulation tool, Wireless InSite (WI) by RemCom [10].
WI is capable of modeling complex electromagnetic propaga-
tion patterns in 3-dimensional (3D) urban, indoor, rural, and
mixed path environments.

A. Real World: Creation of Ground-Truth
We use a publicly available mmWave beam selection dataset

called FLASH [11] to generate the ground-truth from the real
world. This dataset is captured within downtown Boston on an
asphalt road flanked with high rising buildings (see Fig. 3a).
The dataset includes synchronized sensor data from on-board
GPS, a GoPro Hero4 camera, and a Velodyne LiDAR, all
mounted on a 2017 Lincoln MKZ Hybrid autonomous car (see
Fig. 3b). The ground-truth includes the received signal strength
indicator (RSSI), which is acquired using the Talon AD7200
mmWave radio [49], with a pre-defined codebook of 34 beams.
The dataset includes both LOS and NLOS scenarios with
approximately 5K and 3K samples each, respectively. The
LOS scenario corresponds to the vehicle (i.e. receiver) passing
in front of the transmitter without any obstacle, while in NLOS
scenario, a vehicle is located in front of the Tx, blocking LOS.

B. Multiverse Setup
In this section, we describe our approach for creating the

scenarios and setting the RF parameters. The modular steps to
create different twins is depicted in Fig. 4.

1) Creating Scenarios in Wireless InSite: The Wireless
InSite ray tracing tool allows users to create a digital envi-
ronment with 3D maps. We replicate the testbed of FLASH
dataset in WI, using the closest materials and positioning for

the objects. A sample map visual for the digital world is
provided in Fig. 3c.

Import the Map. In WI, a digital world can have various
features, which are stored as layers, e.g. buildings, roads, water
bodies, and foliage. Buildings are modeled as boxes that can
have different material features, e.g. concrete, glass, metal,
providing near-realistic ray reflection and penetration. The first
step in creating a scenario is to obtain an appropriate map.
OpenStreetMaps [37] provides such data, which we process
in Blender [50] as geodata for WI. We confirm that the road
and valley width as well as building dimensions in the digital
world match with the ones in the real world.

Modeling and Placement of Obstacles. In WI, the dimen-
sion and coordinate of obstacles can be set, as desired. While
a LOS scenario is ready for simulation runs after setting up
the map and adding all the aforementioned details, there is one
more step to finalize a NLOS scenario, modeling the obstacles.
Following the FLASH testbed, where the obstacle is a 2018
Toyota Camry with the dimensions of 1.44m × 1.84m ×
4.88m, height, width, and length, respectively, we model the
obstacle in WI as a metal box with the same dimensions
and place it 35cm away from the Tx, shown as white box
in Figs. 3d.

Placement of Tx and Rx. Following the FLASH
testbed [8], the Tx antenna is placed on a cart with the height
of 75 cm. Moreover, the height of Tx itself is 20 cm. Thus,
we set the Tx height to be 95 cm in WI. The receiver car in
the FLASH dataset has a height of 147.5 cm. Thus, we set
the Rx height to be 167.5 cm in the simulation environment.
In each simulation, we have one Tx location and one or more
Rx locations (denoted as LTu,i

for Tu,i). We consider two set
of scenarios, including LOS (S1) and NLOS (S2)

2) Setting RF Parameters in Wireless InSite:
Selection of Propagation Model. WI provides a number of
propagation models. We use X3D because it provides high
fidelity simulations, taking the following channel parameters
into account: 3D ray tracing, indoor-outdoor suitability, atmo-
spheric attenuation (temperature, pressure, humidity), reflec-
tion angle dependent reflection coefficients, and MIMO system
analysis. Computation-wise X3D uses GPU acceleration.

Designing the Tx and Rx Antennas. In the real world
experiments [11], the Talon AD7200 routers are used with
Qualcomm’s QCA9500 FullMAC IEEE 802.11ad Wi-Fi chip
for both Tx and Rx. From the open source characterization of
the antenna pattern [49], we retrieve the SNR measurements
in 3D for 802.11ad standard (60GHz band) to create the
Tx and Rx antenna patterns in WI. The 3D legacy azimuth
(ϕ) and elevation (θ) measurements span [−90◦, 90◦] and
[0◦, 32.4◦], respectively, having 101 and 10 sample points.
We show the virtual representation of ϕ and θ in Fig. 7e.
Moreover, we match the antenna orientations of WI and
the ones in the FLASH dataset on the xy-plane, having the
azimuth (ϕ = 0◦) axis of Tx and Rx parallel (See Fig. 5).
Steinmetzer et al. [49] indicate that they do not provide
beamwidths or steering angles because of the strong variations
in the antenna patterns. Thus, we have to depend on case
by case basis visual inspection when it comes to beamwidth
judgement. Nevertheless, by testing a few custom designed
simple directional antennas, for example E and H-plane half-
power beam widths of 15◦, we confirmed that beamwidth
changes correctly affect the received power in WI, e.g. higher
received power through smaller beamwidth when the same
transmit power is used [51].
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Fig. 3. (a) Experiment location in real world; (b) FLASH experiment setup [8]; (c) Experiment area in the virtual world (twin), showing the map beyond
the area of interest in downtown Boston; (d) Simulation location in twin, showing the first, middle, and last sample points, in order. The 3D box between Tx
and Rx100 models the car obstacle in the NLOS scenario.

Fig. 4. A typical workflow in Wireless InSite (WI) for creating a twin
(suppose Tu,i for scenario Su) in the Multiverse.

Selection of ∆ω, ρ, ι, and ζ. WI allows users to select
ray spacing ∆ω (angle between two adjacent emitted rays),
maximum number of reflections ρ, maximum number of
transmissions ι, and maximum number of diffractions ζ. In our
experiments, we select ray spacing to be ∆ω = 0.25◦. We set ρ
to be either 1 or 3, because we observe that given the geometry
of the environment and the effect of reflections on the received
power, this number of reflections is enough to deliver signals
to the receivers. We choose the ι to be 0, because the data
collection environment (urban canyon) is mostly concrete on
the sides and the floor is asphalt, which typically do not allow
mmWave signals to penetrate through. Finally, ζ is set to
be 1, because after 2 diffractions, mmWave signal strength
is negligible.

3) Ray Tracing in Wireless InSite: For each scenario,
we perform ray tracing over Rx locations and 34 Tx beams
for each twin. In the experiments, the angle between two rays
is set as ∆ω = 0.25◦ and rays are transmitted at all directions
in the Euclidean space, following the antenna pattern spec-
ifications. Since the rays are emitted in discrete angles and
spread as they travel through space, it is not guaranteed that
rays would be received at exact Rx location. Thus, in order
to ensure that received rays are correctly estimated, WI puts a
sphere around the receiver point, with the radius r. Depending
on how large that r is, several rays might pass through the
sphere. There are two steps to identify which ray to select: i)
rays are sorted according to the geometry faces they interact
with and the similar ones are eliminated in order to prevent
over-predicting the delivered energy at the receiver and ii) the
closest ray to the actual Rx point is selected. According to WI
manual, r = ∆ω×Dmax, where Dmax is the coverage range
of Tx (≈ 20m in FLASH). Thus, we estimate r ≈ 8.73 cm.
The X3D model then applies Exact Path Calculations (EPC),
which adjusts the reflection and diffraction points within the
sphere so that the selected rays pass through the exact receiver
points. We consider the highest received power value of the
received ray from each Tx beam at each of the LTu,i

Rx
locations for twin Tu,i.

TABLE II
MULTIVERSE PARAMETERS

TABLE III
DIFFERENCES BETWEEN TWINS

C. Multiverse Setup: Twins in Multiverse

We create the Multiverse with three twins each having
different cost and precision. All twins have the same materials
for the surrounding buildings and foliage, antenna orienta-
tions, transmitted waveforms, transmission power, Tx and Rx
antenna patterns, coordinates for the Rx sample points, noise
power, and antenna sensitivity. To create differences between
twins, we change (i) environment used in the twin world, (ii)
number of allowed reflections (ρ) in simulations, and (iii)
number of Rx locations, LTu,i . The common parameters in
the digital world creation are given in Tab. II, whereas the
differences between twins are highlighted in Tab. III.

1) Baseline Twin Tu,1: Creating a precise map is expensive
and may not be available all the time. Thus, in order to show
the gain of precise geometry (which we create for the next
twins) and to form a baseline for our evaluations, we use
an open area environment as the Baseline twin (excluding
the buildings present in the FLASH testbed). The Open area
environment is not a free-space, as reflections from the far
surrounding buildings in a city is still allowed. We set the
Tx and only one Rx around center region of the open area,
locating them 4.33m away, corresponding to the minimum
Tx-Rx distance in the FLASH testbed, and record the SNR for
34 beams. We use only one Rx location, because in the open
area experiments, different Rx locations are negligibly affected
by the surroundings, due to high attenuation. Such an exper-
iment setting significantly cuts both time and computation in
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ray tracing and forms a basis for our next twin evaluations.
For this twin, we consider three reflections in our simulations.
We design Baseline twin for both the LOS (S1) and NLOS
(S2) scenarios, with B1 = 34. For the S2, we place the
obstacle between Tx and Rx, 35 cm away from the the Tx,
parallel to the situation in the FLASH experiments. To account
for different regions on the road, we first compute the angle
between the Tx and Rx locations in FLASH. We then mul-
tiply the output from open area experiment with the antenna
patterns from Talon router at the identified angle, for each
beam.

Specific characteristics. Following the notations of Sec. IV,
the Baseline twin (Tu,1) has: (a) map1 = open area, (b) O1 =
retrieved from FLASH [11], (c) ρ1 = 3, and (d) |LTu,1 | = 1.

2) 1-Reflection Twin Tu,2: For designing this twin,
we switch the simulation environment to the location where
the FLASH experiments took place. Creating the realistic
environment and using antenna patterns from real life mea-
surements brings a trade-off between significantly increased
computation time and precision in beam selection and received
power. We set the Tx point in WI by precisely measuring
the Tx location in the FLASH experiment location. Moreover,
we import the buildings to WI with the same geometry as
of the real world. In WI simulations, we collect received
beam power at 200 consecutive points, which are uniformly
distributed over a 40 meter trajectory, Tx being 4.33m away
from the trajectory’s middle point (see Fig 3d). We allow
one reflection in the simulations to save on computation time
and realize the effects of simpler settings that mostly allow
LOS communication. For 1-Reflection twin, we have both the
the LOS (S1) and NLOS (S2) scenarios, with B2 = 34. For
S2, we again place the obstacle between Tx and Rx, 35 cm
away from the the Tx, parallel to the situation in the FLASH
experiments.

Specific characteristics. The 1-reflection twin (Tu,2) has:
(a) map2 = Boston, (b) O2 = retrieved from FLASH [11],
(c) ρ2 = 1, and (d) |LTu,2 | = 200.

3) 3-Reflection Twin Tu,3: This twin creates a more com-
prehensive setting in the digital world in order to provide a
more precise beam profiling, even in NLOS cases. We consider
three reflections in the simulations to cope with potentially
dense reflective environments. Like Tu,2 in Sec. V-C.2, we run
the simulations at the same place as the FLASH dataset was
collected. We use 1 Tx, 200 Rx locations, and the same
obstacle settings as in Tu,2 for both the S1 and S2 scenarios.

Specific characteristics. Finally, for 3-reflection
twin (Tu,3): (a) map3 = Boston, (b) O3 = retrieved
from FLASH [11], (c) ρ3 = 3, and (d) |LTu,3 | = 200.

D. Observation From Ray Tracing Experiments
Representative Ray Tracing. A collection of outputs from

the representative raytracing analysis in the WI simulator for
Tu,1, Tu,2, and Tu,3 are presented in Fig. 5 for LOS (S1)
and NLOS (S2) scenarios. We denote different Rx locations
in Tu,2, and Tu,3 with Rxi, where 1 ≤ i ≤ |LTu,2 |, |LTu,3 |,
respectively, and |LTu,2 | = |LTu,3 | = 200, according to
Tab. III. For Tu,1, the only Rx location is denoted as
‘Rx’ (|LTu,1 | = 1). In Fig. 5, we present the ray between the
Tx and Rx130 for Tu,2, and Tu,3. Moreover, we show Rx100
(middle sample point) for location reference. In all examples,
Antenna-10 (t10) is used at Tx. We enlarge the corresponding
antenna patterns for visual purposes, but we keep their location
precise. In each sub-figure, red ray delivers the highest power

Fig. 5. A set of examples for the first, second, and fifth strongest received
rays at Rx130, using antenna-10 (t10) at the Tx in the Multiverse M for Tu,1,
Tu,2, and Tu,3 and both S1 and S2 scenarios. Red ray is the strongest one,
while the ray power decreases towards colder color (red→yellow→green).
Antenna locations are correct, their patterns are not in scale, enlarged for
visual purposes. Due to the mismatch of Tx and Rx antenna height, there was
no direct path for LOS rays when the antennas are directly in front of each
other.

and ray strength decreases in the order of red→yellow→green,
where they represent first, second, and fifth strongest rays.

We observe that when the antennas’ ϕ = 0◦ axes are aligned
and the antennas are close, no direct ray is possible. This is
due to the height difference between Tx and Rx, which comes
from the precise heights we set for the antennas following
the FLASH experiment setting [8], and the antenna patterns
from Talon [49]. Thus, the rays in Tu,1, given in Figs. 5a
and 5b, are delivered by reflection and diffraction from distant
buildings. As a result, the Baseline twin, does not feature the
reflections from the building in FLASH testbed, making results
less reliable. This suggests the idea that a carefully created
twin at the same experiment location would yield more robust
results, which in fact, we confirm in Sec. VI. As the antennas
become more distant, the height difference is compensated by
longer ray travel distance, making a direct ray between Tx and
Rx possible (see red line 5c and 5e). In Tu,2 and Tu,3, direct
paths are identical, having the p10,2

130 = p10,3
130 = −69.65dBm.

The rest of the LOS rays tend to be drastically different due
to the allowed number of reflections (ρ2 = 1 and ρ3 = 3).
In Fig. 5c yellow and green rays are delivered to the Rx with
at most one reflection, whereas in Fig. 5e these rays are able
to undergo multiple reflections.

In NLOS cases direct path is prevented. Thus, rays have
to undergo reflections and/or diffractions in order to reach to
the Rx. This is where we see the difference between p10,2

130

and p10,3
130 . The rays in Tu,2 are only allowed to reflect once

compared to Tu,3, where ρi = 3. Thus, in Tu,2, rays are
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Fig. 6. Comparing computation time to run a single antenna experiment on
WI for different number of reflections and CPU usage on computers with Intel
i9-11900 processor with 32GB RAM (CPU@2.7GHz) and Intel i9-10900K
processor with 48GB RAM (CPU@3.7GHz). Overall, NLOS requires more
time to complete simulations compared to the LOS case, because the obstacle
in the NLOS case creates more surface for rays to reflect, increasing the
calculation time. These plots suggest that with more computation power, fast
ray tracing and beam selection operations could be performed at a plausible
fidelity level.

TABLE IV
COMPARING TALON AND WI METRICS

more likely to travel longer to arrive at Rx when there is no
direct path. This way, signals in Tu,2 attenuate more, causing
lower received power for the strongest beam, e.g., p10,2

130 =
−108.4 dBm and p10,3

130 = −78.16 dBm in Figs. 5d and 5f,
respectively. Again, due to different number of reflections,
we observe yellow and green rays follow different paths in
NLOS cases. Overall, we tend to observe pm,3j ≥ pm,2j . More-
over, we expect more accurate beam matching performance for
Tu,3, as we also confirm in the Sec. VI.

Cost for Creating the Twins. The cost of creating Tu,1,
Tu,2, and Tu,3 is determined by Eq. 4. In Eq. 4, the CTu,i

map
consists of one-time cost for: (i) finding appropriate maps
and confirming building/object dimensions with their real life
counterparts, (ii) antenna pattern design, (iii) precise antenna
locations and heights, (iv) obstacle locations and dimensions,
(v) deciding on appropriate waveforms and materials, and
(vi) selecting the most representative propagation model.
We observe CTu,1

map < CTu,2
map = CTu,3

map , because Tu,1 is an open
area without any building details, whereas Tu,2 and Tu,3 are
exact map replica of the real world. On the other hand, CTu,i

lookup
is an offline computation cost. In order to create the lookup
tables, we use a Dell XPS computer with Intel i9 processor
and 32GB RAM following Sec. IV-B.1. Detailed analysis of
computation time with respect to the CPU usage is given in
Fig. 6, where we observe a semi-linear relation between the
computation time and the number of reflections (ρ). The CTu,i

lookup
for Tu,1, Tu,2, and Tu,3 are given in Tab. III.

Antenna Similarity (visual representation). In Fig. 7a-7d,
we showcase several antenna pattern examples that we have
re-created in WI ray tracing software and provide their com-
parisons with the Talon antenna patterns for visual similarity.
The antenna pattern in Fig. 7a belongs to the 24th beam (ele-
ment t24), whereas Fig. 7b is the Rx in WI. In Fig. 7c
and 7d, we provide an example comparison between the
Talon antenna patterns (solid blue line) and the re-created
beams in WI (shaded area) for the 24th beam (element t24)
in 2D azimuth (θ = 0◦) and elevation (ϕ = 0◦), respec-
tively. The slight discrepancy comes from the fact that WI’s
user defined antenna patterns only accept sample points with

Fig. 7. Re-created antenna pattern examples in Wireless InSite: (a) Tx
Antenna-24 (t24) and (b) the Rx antenna. Antenna pattern comparisons
between the Talon antenna patterns (solid blue line) and the re-created beams
in WI (shaded area): (c) Azimuth, (d) Elevation. (e) Antenna pattern similarity:
The definition of ϕ and θ on the Cartesian coordinates and vector discrepancy
calculation, where ςT and ςWI, are points in experimental and simulation
antenna pattern, respectively, and ς⃗∆ is the vector difference between the
ςT and ςWI.

integer increments (ϕδ , θδ). To preserve the complete SNR
values, we distribute the experimental SNR values over the
closest azimuth and elevation regions, while keeping ϕ = 0 as
the reference point; thus, ϕ ∈ [−100◦, 100◦] and θ ∈ [0◦, 36◦].
The complete metrics for antenna pattern sample comparison
is given in Tab. IV.

Antenna Similarity (quantitative measures). In addition
to a visual comparison, we also provide a quantitative measure
for the antenna similarity between Talon and WI. We measure
the antenna discrepancy with an average score from each
of these 34 beams, given by the magnitude of the vec-
tor differences between experimental and simulation antenna
patterns. A visual vector representation of antenna pattern
samples is given in Fig. 7e, where ςT and ςWI represent points
in experimental and simulation antenna pattern, respectively,
which were created with corresponding SNR values, ϕ, and
θ. The discrepancy score for a single antenna, given in
Eq. 9, is calculated by averaging the normalized magnitudes
of difference vectors, ς⃗∆, where the normalization factor is
the magnitude of the corresponding antenna pattern sample
(|ς⃗WI|=|ς⃗T |).

∆single =
1
Q

Q∑
i=1

|ς⃗WIi − ς⃗Ti |
|ς⃗WIi |

, (9)

where Q = 1010 (representing the number of sample points in
the antenna patterns), and 0 ≤ ∆single ≤ 2. The final average
antenna pattern similarity score, averaged over 34 beams,
is found to be ∆ = 0.0931 for both scenarios, S1 and S2.
Smaller the ∆, more similar the antenna patterns are. The
designed set of antenna patterns for the Multiverse using WI
simulation are available in [12].

VI. PERFORMANCE OF THE MULTIVERSE

We validate our proposed framework using the FLASH
dataset, presented in Sec. V-A. We consider two set of
scenarios, including LOS (S1) and NLOS (S2). For each
scenario, the Multiverse consists of three twins each, M1 =
{T1,1, T1,2, T1,3} for LOS scenario as an example.
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TABLE V
THE Acc(1,0) WHILE BEING EXPOSED TO THE UNSEEN ENVIRONMENTS.

THE DL-BASED METHODS EXPERIENCE EXTENSIVE DROP IN ACCU-
RACY DUE NON-ADAPTABILITY TO THE CHANGES

IN THE ENVIRONMENT

A. Evaluation Metrics
Given the ground-truth measurements from FLASH dataset,

G ∈ R|B|, and the SNRs S ∈ R|B| for B beams (either
obtained from the Multiverse or predicted by DL-based
method), we evaluate the beam selection performance as:

Acc(K,T ) =
1
V

V∑
l=1

1(∃g⊂G|g∈Sk), (10)

where V denotes the number of samples and τ is a Boolean
predicate, with 1τ to be 1 if τ is true, and 0 otherwise.
In Eq. 10, the set g denotes a subset of beams in G (ground-
truth from FLASH dataset) such that the observed SNR of
beams in g is within the T − dB threshold of the optimum
beam, i.e, g = {tm ∈ B|SNRtm ≥ SNRt∗ −T}, where SNRt∗
denotes the SNR of the optimum beam from FLASH ground-
truth. Moreover, SK denotes the top-K beams obtained by
either the Multiverse or DL-based method, defined as:

SK = {s| arg max
s⊂{1,...,|B|},|s|=K

∑
m∈s

SNRtm}, (11)

where SNRtm denotes the inferred SNR for beam tm. This
is intuitive as our observation indicates that there are closely
competitive beams in Talon radio [49], used for collecting
the FLASH dataset. Thus, selecting any of them results in
a favorable observed SNR. For T = 0 and K = 1, we get
the conventional top-1 accuracy, where only the best beam in
FLASH is compared with the best inferred beam. Throughout
our experiments, we mark the results based on the seen
scenario, unless explicitly mentioned otherwise. For example,
the results for “LOS” scenario correspond to a setting where
the LOS scenario is considered as seen, and NLOS scenario is
considered as unseen. Similarly, the experiments for “NLOS”
scenario correspond to having NLOS and LOS scenarios as
seen and unseen, respectively.

B. Motivation for the Multiverse
We consider a scenario where the mmWave beam initializa-

tion is performed by only relying on multimodal data and DL-
based method proposed in Sec. IV-A. We follow the models
released publicly along with the FLASH dataset to train a
CNN [8]. The proposed architecture is inspired by ResNet [54]
and exploits feature level fusion to reinforce the prediction,
by incorporating the sensor data from all modalities. In Tab. V,
we benchmark the performance of the DL-based method
when the CNN is trained on one scenario and tested on
another (unseen during training), e.g. trained on LOS scenario
S1 and tested on NLOS scenario S2. We observe that the max-
imum drop in accuracy (Acc(1,0)) is 73.42%, while making a
transition from S2 to S1 scenario. In Fig. 8, we present the
distribution of the beams in LOS and NLOS scenarios. In the
mmWave beamforming, the codebooks are fixed; thus, out-of-
distribution classes (i.e., beams) are not observed. However,

Fig. 8. Distribution beams for (a) LOS and (b) NLOS scenario in FLASH
dataset. Presence of obstacles significantly affect the optimal beam in the
mmWave band.

Fig. 9. Benchmarking the performance of three twins in the Multiverse
against the real-world measurements for (a) LOS S1 and (b) NLOS S2 sce-
narios. The accuracy for K = 10 and SNR thresholds of 0, 1, 2 dB indicate
the fidelity of the Multiverse to the real world setting. The 3-Reflection twin
and 1-Reflection twin exhibits more fidelity over the Baseline twin.

the presence of obstacles can affect the distributions of the
beam significantly (for example the dominant optimal beam
shifts from 20 to 11 while transitioning from LOS and NLOS
scenario), which cannot be handled with the DL-only method.

Observation 1: From Tab. V, we observe that if a DL-
only method is used for beam selection, the accuracy severely
degrades, when unseen scenarios are encountered.

C. Validation of the Multiverse Concept
In Fig. 9, we compare the performance of the Multiverse

against the ground-truth measurements from the FLASH
dataset to validate the fidelity of emulation outputs. We report
the metric Acc(K,T ) in Eq. 10 and set the parameter K
as 10 and gradually relax the SNR threshold T with T =
{0 dB, 1 dB, 2 dB}. Note that T = 0 is the most extreme
case, where only the optimum beam in FLASH is considered
for justification. From Fig. 9, we observe that for the LOS
scenario (S1), Baseline twin T1,1 provides the Acc(10,0) of
52.38%, while 1-Reflection and 3-Reflection twins T1,2 and
T1,3 perform closely with accuracy of 71.74% and 72.69%,
respectively. The Acc(10,0) increases as we relax the threshold
on SNR and ranges between 76-79% across all three twins.
For NLOS scenario, S2, we observe that 3-Reflection twin
T2,3 exhibits superiority in Acc(10,0) against T2,1 and T2,2
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Fig. 10. Probability of inclusion for three twins for (a) LOS S1 and (b) NLOS S2 scenarios. Each column shows a region on the road and each row depicts
the probability of inclusion for one of the twins. While the performance on twins varies in different regions, the 3-Reflection twin outperforms the Baseline
and 1-Reflection twins on average. All twins offer higher probability of inclusion in S1 compared to S2. A few sample regions where one twin has more
fidelity than other, is highlighted in both (a) and (b).

by 21.49% and 2.78%, respectively. Overall, the designed
Multiverse depicts the accuracy ranging between 52.38 −
80.08%, 66.92−84.41% and 76.63−85.22% for SNR thresh-
olds of 0 dB, 1 dB, 2 dB, respectively, for both LOS (S1) and
NLOS (S2) scenarios across all twins.

Observation 2: From Fig. 9, we observe that the accuracy
over the three twins is related as Tu,1 < Tu,2 < Tu,3,
regardless of the scenarios. We observe the maximum accuracy
of 79.43% and 85.22% with 3-Reflection twin for LOS and
NLOS scenarios, respectively, which corroborates the fidelity
of the Multiverse against the ground-truth measurements from
the FLASH dataset.

D. Comparing the Performance of Twins
In Fig. 10, we compare the probability of inclusion

p(K,LT (Tl,i),Sl, r) for K = 10, three twins (i = {1, 2, 3}),
and both LOS and NLOS scenarios (l = {1, 2}). In this
figure, each blue shaded rectangle represents the location
on the road (i.e., r) for which the probability of inclusion
is calculated, with 20cm spacing, as explained in Sec. V.
From this figure we conclude three observations. First, the
performance of the twins depends on the location of the
receiver on the road. This is intuitive as the number of
reflections in real world might vary in each location, unlike
the Multiverse where it is constant for each twin. Thus, each
twin might be closer to the real world scenario on a case
by case basis. Second, we observe that 3-Reflection twin
performs better than Baseline and 1-Reflection twins with the
average probability of inclusion of 74.87− 78.68% compared
to that of 43.90− 47.48% and 66.43− 76.60% for LOS (S1)
and NLOS (S2) scenarios, respectively. Third, the Multiverse
provides higher probability of inclusion in S1 compared to S2

by 4− 8% margin.
Observation 3: From Fig. 10, we observe that the perfor-

mance of the twins varies over different regions of the road (i.e.
there is not a twin that is superior at all time). Thus, the
region wise selection of twins (as per Eq. 7) ensures that the
optimal twins is selected on a case-by-case basis. The average
probably of inclusion over all regions of the road is higher with
3-Reflection twin, which has a more complex modeling of the
propagation pattern.

E. Digital Twin Selection From the Multiverse

Effect of Control Parameter. The proposed optimization
problem in Eq. 7 selects the optimum twin and set of top-K
beams in different regions of the road. In Fig. 11a, we show
the effect of control parameter α on the optimization problem
in Eq. 7 for LOS (S1) and NLOS (S2) scenarios, where there
is no constraint on the communication latency. We observe
that by increasing the control parameter α, both probability
of inclusion and beam selection time decrease. Note that by
increasing α, the optimization problem in Eq. 7 is enforced to
decrease K to lower the communication latency cost, which
results in reduced probability of inclusion and beam selection
time, consequently. In particular, we observe that when α = 0,
the beam selection time for LOS and NLOS scenarios are
3.43ms and 3.60ms, respectively, and the probability of
inclusion is 1 for both. Moreover, our experiments indicate
that when α = 0, 3-Reflection twin is the dominantly selected
by ratio of 99.5% and 93% in LOS and NLOS scenarios,
respectively. This is intuitive as when α = 0 and there is
no constraints on the communication latency, the algorithm
is enabled to select the twin with the highest fidelity and
as high values of K to ensure beam alignment. Moreover,
we observe that, when α > 15 the beam selection time is lower
than 0.46ms, which corresponds to sweeping up to 3 beams
according to Eq. 6, imposed due to weighting the second term
in Eq. 7.

Observation 4: Increasing the control parameter α encour-
ages the optimization problem in Eq. 7 to select a lower K and
decrease the communication cost. From Fig. 11a, we observe
that both probability of inclusion and beam selection time
decrease as α increases (as a consequence of having a more
strict bound on K).

Effect of Latency Constraint. In Tab. VI, we report the
percentage of the times that each of the twins were selected
under three communication latency constraints, CComm1 =
0.62ms, CComm2 = 1.56ms and CComm3 = 3.12ms,
corresponding to the maximum allowed number of beams
being 4, 10, and 20 according to the 5G-NR standard (Eq. 6),
respectively. In Tab. VI, the summation of each column is
equal to 100%, and each row depicts the usage of specific
twins as the the communication latency constraint is relaxed,
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Fig. 11. (a) Analysis of probability of inclusion and beam selection time for different α values in Eq. 7. The probability of inclusion decreases as the
optimization problem is weighted on the second term in Eq. 7 that encourages minimizing the communication cost. (b) The Acc(10,0) of DL-based method
when fine-tuned by the labels obtained by 3-Reflection twin. We observe significant improvement by fine-tuning with regression loss. The classification
method, on the other hand, shows lower performance than the case without fine-tuning. (c) Comparing the accuracy (Acc(K,0)) of DL-only method with
Multiverse for different values of K. Multiverse is superior to DL-only method for all values of K and both LOS/NLOS scenarios.

from the most strict (CComm1 ) to the least strict (CComm3 ).
We report the selection percentage for α = {0, 2}. For
α = 0, we observe, as the constraint on communication
latency is relaxed, the percentage of the times that the twin
with higher complexity (and higher probability of inclusion)
is selected increases. In particular, the usage for 3-Reflection
twin increases from 42.5% and 62% to 74% and 68.5% for
LOS and NLOS scenarios, respectively. On the other hand,
the usage for 1-Reflection twin decrease by 31% and 4.5% for
each scenario and the usage for the Baseline twin stay within
5−6.5% range. This is intuitive as relaxing the communication
latency constraint indicates that the users are inclined to have
a more robust than fast communication; thus, the twin with
higher complexity and higher probability of inclusion is more
likely to be chosen.

When α = 2, the second term in Eq. 7 is weighted as
twice. In this case, we observe that the usage for Baseline twin
increases from 7% and 5.5% to 12% and 10% for LOS and
NLOS scenarios, respectively, as the communication latency
is relaxed. The 1-Reflection twin exhibits 11.5% decrease in
usage in LOS scenario and 5.5% increase in NLOS scenario.
Finally, the percentage of the times that 3-Reflection twin
is used decreases. By relaxing the communication latency
constraint, the number of allowed beams increases. As a result,
less complex twins such as Baseline and 1-Reflection twins
can appear as competitive method to the 3-Reflection twin.

Observation 5: From Tab. VI, we observe that relaxing the
communication latency constraint favors selecting the twin
with higher complexity (and higher probability of inclusion).
However, increasing the control parameter α in Eq. 7 increase
the usage of Baseline and 1-Reflection twins as the communi-
cation constraint is relaxed.

F. Fine-Tuning With the Multiverse Ground-Truth
We consider a scenario in which a percentage of labels

from the Multiverse (ray tracing outputs), which we refer to
as labeling ratio, is paired with the local multimodal sensor
data to fine-tune the local model at the vehicle. For testing,
we only use the labels from FLASH dataset that is our ground-
truth. We generate the labels from 3-Reflection twin in the
Multiverse, which offers the highest average probability of
inclusion. In one experiment, we use the multimodal sensor
data and labels from FLASH ground-truth for S1. We label
the sensor data within S2 using the ray tracing outputs
from the Multiverse (not FLASH) and fine-tune the model
(LOS→NLOS). We then repeat the same experiment with
S1 and S2 role-reversed (NLOS→LOS). As in Sec. VI-B,

we use the model architecture released by FLASH frame-
work [8]. In Fig. 11b, we compare the Acc(10,0) of DL-only
method without fine-tuning against fine-tuning with classifi-
cation and regression loss. The Acc(10,0) without fine-tuning
are 75.95% and 60.23% for LOS and NLOS scenarios (see
dotted lines in Fig. 11b), respectively. We note that the Acc(1,0)
and Acc(10,0) for LOS (S1) and NLOS (S2) scenarios in the
Multiverse range between 41− 72% and 47− 80% according
to Fig. 9, respectively. On the other hand, we observe that
Acc(10,0) with fine-tuning ranges between 40.35 − 54.27%
and 59.54− 69.84% for S1 and S2, with classification. Inter-
estingly, the Acc(10,0) with fine-tuning is within the Acc(1,0)
and Acc(10,0) from the Multiverse and it is even lower than
the performance of DL method without fine-tuning, compare
red solid and dotted lines for (LOS→NLOS) and black
solid and dotted lines for (NLOS→LOS). We note that the
labeling strategy in FLASH framework in one-hot encoding.
This significantly limits the performance of fine-tuning with
labels from Multiverse, since the ray tracing profiles from
all beams except for the one with the highest power is lost.
Thus, we go one step further and use the same FLASH
framework with a regression loss. Here, we use the Mean
Absolute Error (MAE) for training the model and replace the
softmax layer with relu; however, when it comes to evaluation,
we report the Acc(10,0) to benchmark the performance against
two other competing methods (DL-only without fine-tuning
and classification). Interestingly, we observe the fine-tuning
with a regression model significantly improves the Acc(10,0).
In particular, we observe that the Acc(10,0) with regression is
higher than 96.95% for all labeling ratios, which is superior to
the case without fine-tuning by 21−36.72% and classification
by 24.62− 55.64%.

Observation 6: From Fig. 11b, we observe > 96% accu-
racy, while fine-tuning the local DL model with a regression
loss. With classification and one-hot encoding, the ray tracing
information from all the beams, except for the one with the
highest power, is lost. Thus, a regression based fine-tuning is
more suitable in our use case.

G. Multiverse Against DL-Only Method
In Fig. 11c, we benchmark the performance of Multiverse

against the DL-only method for LOS and NLOS scenarios. For
DL-only method, we only use the DL models from Sec. IV-A
and report the Acc(K,0) for 34 beams in FLASH dataset. For
Multiverse, we report the accuracy, when the communication
latency constraint is set as each K in x-axis and the control
parameter α is set as zero. Note that the communication

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Northeastern University. Downloaded on April 08,2024 at 19:51:24 UTC from IEEE Xplore.  Restrictions apply. 



SALEHI et al.: MULTIVERSE AT THE EDGE: INTERACTING REAL WORLD AND DIGITAL TWINS 15

TABLE VI
THE BREAKDOWN OF THE USAGE (IN %) FOR THREE TWINS IN THE MULTIVERSE FOR LOS (S1) AND NLOS (S2) SCENARIOS WHILE IMPOSED WITH

THREE COMMUNICATION LATENCY CONSTRAINTS AND α={0, 2}. WHEN α = 0, RELAXING THE COMMUNICATION CONSTRAINT RESULTS IN AN
INCREASE IN CHOOSING 3-REFLECTION TWIN AND DECREASE IN CHOOSING BASELINE AND 1-REFLECTION TWINS. HOWEVER, WHEN

α ̸= 0, THE USAGE OF BASELINE AND 1-REFLECTION TWINS INCREASES AS THE COMMUNICATION CONSTRAINT IS RELAXED

TABLE VII
BENCHMARKING MULTIVERSE AGAINST USING SINGLE DIGITAL TWINS

AND DL-ONLY METHODS. THE MULTIVERSE RESULTS IN THE HIGH-
EST ACCURACY BY SELECTING THE APPROPRIATE TWIN AND SET

OF TOP-K BEAMS WITH MODERATE BEAM SELECTION TIME
AND COMPUTATION COST. IN THIS TABLE, “×” DENOTES

THE ONE UNIT OF TIME THAT SCALES ACCORDING TO
THE AVAILABLE COMPUTATION RESOURCES

latency constraint in Eq. 7, imposes an upper bound on the
number of allowed beams, and the number of selected beams
can be less for each K in x-axis with Multiverse. From this
figure, we observe that Multiverse is outperforming the DL-
only method for both LOS and NLOS scenarios and over all
K values. In particular, the maximum achieved accuracy with
DL-only method are 92.43% and 79.08% and are achieved
when K > 26 and K > 33 for LOS and NLOS scenarios,
respectively. On the other hand, the Multiverse achieves a
similar accuracy when K > 12 and K > 4. As a result,
we conclude that for the same target K the Multiverse has
higher accuracy and for the same target accuracy it results in
the lower overhead. We provide quantitative comparison with
respect to the beam selection time in Sec. VI-I.

Observation 7: From Fig. 11c, we observe that Multiverse
is superior to DL-only method for all values of K and both
LOS and NLOS scenarios.

H. Multiverse Against Single Digital Twin
We consider a scenario in which only a single digital twin

is available for beam selection, while encountering an unseen
scenario. In Tab. VII, we report the accuracy (Acc(10,0)),
beam selection time, and computation cost for four competing
methods. In the DL-only method, we use the deep learning
models that are trained on the seen scenarios (see Sec. IV-A).
In single B-Twin setting, we consider Baseline twin as the
only option available and use the look up tables from this
twin to solve Eq. 7. Note that, in this case, solving Eq. 7
corresponds to selecting the set of top-K beams only, whereas
when multiple twins are available the optimization problem
in Eq. 7 jointly optimizes the selection of the twin and set
of top-K beams. The same logic applies to single 1R-Twin

and single 3R-Twin settings as well. Finally, we compare
the above methods against Multiverse, where three twins
each with a different level of fidelity are available. For all
experiments, we set the control parameter α as zero in Eq. 7
to compare the twins with respect to their best achievable
accuracy. Nevertheless, we also report the beam selection time
to compare these four methods in the communication latency.
From Tab. VII, we observe that Multiverse provides the highest
accuracy compared to all three single twins (by 11.47−45.66%
margin) as well as the DL-only (by 14.2 − 29.33% margin)
for both LOS and NLOS scenarios. Interestingly, we observe
that the Multiverse outperforms the single 3R-Twin, which
shows the highest average accuracy according to Fig. 9. This is
aligned with the experiments in Fig. 10, where we observe that
there is not a dominant twin that outperforms others over all
locations on the road. This corroborates the idea of region wise
selection of twins in Eq. 7, where we select the optimum twin
from Multiverse and top-K beams on a case-by-case basis.

From the beam selection time and computation cost per-
spective, the DL-only methods requires training a model
for 100 epochs, which is costly; however, at the inference
phase, it predicts the optimum beam in ∼ 0.6ms (based on
measurements on a NVIDIA V100 GPU). Considering the
delay of sweeping top-10 beams (1.56ms as per Eq. 6),
the entire computation overhead with DL-only methods is
∼ 2.16ms. For single twins, we observe that the B-Twin
has the highest average beam selection time over LOS and
NLOS scenarios. This is because the B-Twin has the lowest
average level of fidelity compared to two other twins. Thus,
the optimization problem in Eq. 7 is encouraged to increase
the number of selected top-K beams to ensure capturing the
optimum beam, which results in the increased beam selection
time. On the other hand, the Multiverse results in slightly
higher average beam selection time compared to single 1R-
Twin and 3R-Twin twins, but higher accuracy according to
Tab. VII. As described in Sec. IV-B.1, the computation cost
of the generating the look up tables for single twins is propor-
tional to the number of reflections (ρi), Rx locations (nTu,i

),
and beams (Bi). Overall, we observe that the computation
overhead is related as described in the last column of Tab. VII
for different twins, and scales (with factor “×”) depending
on the available computation resources for running the ray
tracing emulation. For Multiverse, different twins might be
selected at different regions of the road. We identify the ratio
of selecting each of the twins as 0.06, 0.315, and 0.625 for
B-Twin, 1R-Twin, and 3R-Twin for LOS scenario, and 0.065,
0.295, and 0.64 for NLOS scenario, respectively. This results
in the average relative computation cost of 157×. Note that in
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Fig. 12. The beam selection time and accuracy for two exhaustive search
based methods (802.11ad and 5G-NR) and DL-only and Multiverse for
K = {10, 20}. The beam selection time and accuracy for DL-only and
Multiverse are averaged over LOS and NLOS scenarios for DL-only and
Multiverse. The actual beam selection time of 20.31 ms for 5G-NR is scaled
here, for better visibility and comparison purpose.

our system design, the look up tables are generated offline (see
Sec. IV-B.1). Thus, the computation cost of running the ray
tracing emulation is not relevant in the real-time Multiverse
interaction step (see Sec. IV-B.2).

Observation 8: From Tab. VII, we observe that Multiverse
is superior to DL-only as well as using single digital twins
in accuracy, with relatively close beam selection time and
moderate computation cost.

I. Benchmarking Multiverse in Accuracy and Overhead
In Fig. 12, we report the beam selection time and Acc(K,0)

for two exhaustive search based methods (802.11ad and 5G-
NR standards), DL-only and Multiverse for K = {10, 20}.
We use Eq. 6 to model the beam selection time for different
number of beams with 5G-NR, DL-only, and Multiverse.
Later, we provide quantitative comparisons with 802.11ad
standard as well. With 5G-NR standard, it takes 20.31ms to
exhaustively sweep 34 beams as per Eq. 6, and it provides
100% accuracy. The DL-only method, on the other hand,
reduces the beam selection time to 2.16ms and 3.72ms for
10 and 20 beams, while providing the accuracy of 68.09%
and 82.90%, respectively. With Multiverse, whenever the DL-
based method identified as faulty, the BS exploits the look up
tables and runs the optimization problem in Eq. 7 to obtain
the optimum twin and associated top-K beams according to
the communication latency constraints. The local execution of
Eq. 7 takes ∼ 23µs on a commercial laptop. Thus, given
the the probability of inclusion from the so far seen scenario,
the BS can determine the optimum twin and set of top-
K beams in near real-time. From Fig. 12, we observe that
the Multiverse is the most successful method with 0.75ms
and 1.34ms beam selection time and 89.86% and 97.35%
accuracy for K = 10 and K = 20, respectively. Interestingly,
we observe that the Multiverse with 10 beams outperforms
the DL-only method with 20 beams in both beam selec-
tion time and accuracy, despite of being imposed of more
strict constraints. Moreover, we present the beam selection
time with another exhaustive search based method, namely
802.11ad standard. This standard is a contention based channel
access method and the minimum beam selection time with
this standard is reported as 1.27ms [49] for 34 beams. We
note that the selected top-K beams in the Multiverse are
bounded by 12 while targeting the inclusion probability of
92% (there is no need to sweep more than 12 beams with
the Multiverse). Sweeping 12 beams (K = 12) imposes the
latency of 0.4482ms and 1.87ms with 802.11ad and 5G-
NR standards. Thus, we conclude that the Multiverse results

TABLE VIII
THE BEAM SELECTION TIME WITH EXHAUSTIVE SEARCH AND

MULTIVERSE FOR THREE MMWAVE RADIOS WITH 34, 64, AND 256
BEAMS. IN THIS TABLE, THE FIRST AND SECOND NUMBERS

DENOTES THE BEAM SELECTION TIME WITH 802.11AD
AND 5G-NR STANDARDS, RESPECTIVELY. THE EFFECT OF

IMPROVEMENT IN BEAM SELECTION TIME IS MORE
PRONOUNCED WHEN THE CODEBOOK

HAS MORE BEAMS

TABLE IX
COMPARISON OF THE PROPOSED MULTIVERSE WITH THE RELEVANT

STATE-OF-THE-ART MMWAVE BEAM SELECTION METHODS

in 64.70% and 90.79% improvement in beam selection time
compared to the 802.11ad standard and 5G-NR standards,
respectively.

Note that the COTS mmWave radios typically have a
larger codebook (than 34 beams), which results in a higher
overhead. For example, the Talon AD7200 radio that are
used for data collection in FLASH dataset actually sup-
port 64 beams. Another example is the National Instruments
mmWave radio [55] that has a codebook with 16 beams, which
also enables beamforming at both Tx and Rx for maximum
efficiency; thus, consisting of total of 256 possible beam
combinations. On the other hand, the Multiverse diminishes
the number of beam by factor of 0.35 in FLASH dataset.
In Tab. VIII we compare the beam selection time with exhaus-
tive search and Multiverse for Talon and NI radios, considering
the same scaling factor of 0.35. From this table, we conclude,
with higher number of beam, the effect of reduction in the
beam selection time is more pronounced. On the other hand,
given that mmWaves provide high rates of up to 4.6 Gbps [56],
a small improvement in the beam selection time (0.44ms with
802.11ad and 18.44ms with 5G-NR standard) may result in
loss of up to 2.02 − 84.82 Mb of data per second, which in
return may halt critical applications, such as video streaming
and autonomous driving.

Observation 9: From Fig. 12, we observe that, by using
Multiverse, the beam selection time is decreased by 67.70 −
90.79% compared to the 802.11ad and 5G-NR standards,
respectively, that employ exhaustive search. The effect of
reduction in beam selection time is more pronounced in larger
codebooks. Moreover, we observe that the Multiverse with
10 beams outperforms the DL-only method with 20 beams
in both beam selection time and accuracy, despite of being
imposed of a more strict constraint.

J. Multiverse Against State-of-the-Art Multimodal Methods
In Tab. IX, we compare the performance of the Multiverse

with the state-of-the-art mmWave beam selection methods by
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Klautau et al. [57], Dias et al. [58], and Xu et al. [59].
We report the average top-1 accuracy for LOS and NLOS
scenarios. For the Multiverse, we use the accuracies from
3-Reflection twin and consider the 2 dB threshold (Acc(1,2)
in Eq. 10). We observe that the Multiverse outperforms the
competing methods by 6-46% in accuracy. Unlike our work,
other methods are only validated on synthetic data. The first
two works use LiDAR sensors on the synthetically-generated
Raymobtime dataset [60], and Xu et al. [59] generate images
using Blender software [50] and use them to construct a
LiDAR-like point cloud.

Observation 10: From Tab. IX, we observe that the
Multiverse is superior to the state-of-the-art multimodal
mmWave beam selection methods by 6− 46%.

K. Beam Coherence Time
In vehicular networks, the maximum delay threshold in

the mmWave band is characterized by the “beam coherence
time” that is the duration of the time for which a beam is
valid. In the FLASH dataset, the BS-vehicle communication
coverage spans ∼40 m [8]. We use the analysis from [61] to
estimate the contact time (the total time that the vehicle is
in the coverage range of the BS) as Tcontact = 2h tan(

ϕBS
2 )

vl
.

Here, ϕBS and h denote the coverage angle and height of
the BS, 168.57◦ and 0.95 m, respectively, and vl is the
velocity of the vehicle. From this equation, we observe that a
vehicle with higher speed has a lower beam coherence time.
We estimate the minimum contact time between the vehicles
and BS as 2.12 s, by taking into account the maximum speed
of 20mph in the FLASH dataset. Considering the 34 beams
in the codebook, we estimate the beam coherence time as
2.12/34 = 62.4ms. As a result, each beam at the BS is
approximately valid for 62.4ms, which is the delay threshold
for beam selection. Interestingly, we observe that the 5G-NR
standard (which exploit the exhaustive sweeping as per Eq. 1)
spends 32.55% of the coherence time for beam initialization.
On the other hand, Multiverse occupies maximum 3% of the
coherence time and the remaining time can be used for data
transmission. The coherence time is even more strict, when
the vehicle speed is higher, or the codebook has more beams.
In the mmWave band, due to Gbps transmission rate, even
small fractions of time result in an immense difference in
the amount of exchanged data. Thus, although the traditional
methods fit in the beam coherence time, they result in higher
throughput loss than the Multiverse.

Observation 11: We observe that the 5G-NR standard
spends 32.55% of the coherence time for beam initialization.
On the other hand, Multiverse occupies 3% of the coherence
time, and the remaining time can be used for the data
transmission.

VII. FUTURE DIRECTIONS AND CHALLENGES

In this paper, we present a pioneering work on the digital
twin field that offers different virtual world choices based on
fidelity needs for mmWave beamforming. In the following,
we provide future challenges and directions we plan on
pursuing:
• Computation Resources: With ordinary computers today,

ray tracing takes a long time to keep up with fast-pacing
vehicular traffic. Thus, in today’s standards expensive comput-
ing sources are needed. However, as the computation power

for devices and the availability of such devices are in steady
rise [62], more powerful computations will be ubiquitous in
the future, making ray tracing possible in the order ms.
• Re-ray Tracing: As indicated previously, ray tracing

is the bottleneck of the digital twin in terms of computa-
tion and timing, because each time a new environment is
entered, the ray tracing needs to be run again. In this paper,
we propose addressing this by creating beam dictionaries by
constantly running the twin so that when an appropriate beam
is requested, the twin can provide an optimal answer. However,
in case of an environment that the digital twin has not seen
or generated before, ray tracing needs to be run from scratch.
In order to cut the ray tracing time, we will develop more
efficient computation strategies so that the ray tracing from
scratch is not needed.
• Reconfigurable Networks: Currently, possible Tx beam

options depend on preset beam patterns and directions, which
brings suboptimal beam selections, necessitating alternative
ways to deliver signals to the Rx. Given that real-time fast
beam steering are at a development stage [63], we will
explore the computation feasibilities of beam generation that
eliminates the dictionary dependency at Tx using digital twins.
Additionally, reconfigurable intelligent surfaces (RIS), which
aims to (i) redirect and (ii) change the phase of incoming
rays so that they constructively aggregate at a target Rx,
gains attention for digital twins in recent years [36], enabling
reconfigurable networks. Accordingly, by constantly running
the real world replica and updating the deployed ML models,
the digital twins calculates optimal wireless parameters, such
as standards, available bandwidth, beam features, beam direc-
tions, and RIS parameters. In future work, we will explore
feasibility of reconfigurable networks using digital twins by
extending our preliminary work [51].
• Computation Load and Data Granularity Trade-off:

As we discussed in Sec.VI-C and VI-D, accuracy and compu-
tation load in twins are inversely proportional. Additionally,
the level of detail in multimodal dataset transmitted to digital
twins affects the beam selection performance by altering the
virtual world precision, hence ray tracing outcome. In future
work, we will explore the impact of data granularity on the
beam selection accuracy and computation load, for which
we will investigate alternative methods to mitigate, such as
transfer learning.
• Multiverse for Big Data Generation and Generalizable

Learning Agents: Thanks to the capabilities of WI [10]
and the expansive details of the digital twin options in the
Multiverse, in the future Multiverse could be used as a data
generation factory, which will allow training deep learning
models for smarter wireless decisions for various applications.
For example, angle of ray arrivals, ray bouncing points,
and associated power values could be used for optimal RIS
placement; power delay profile, delay spread, RSSI values, and
the features of reflection, diffraction, and transmission could
be used for channel modeling without the hassle of setting
complicated and expensive experiments; bit-error-rate (BER),
RSSI, H-matrix, and SNR values could be used for MIMO
and physical layer applications.

VIII. CONCLUSION

In this paper, we propose to expand the digital twin concept
towards a Multiverse of twins and demonstrate its application
for mmWave beam selection in V2X scenarios. The Multiverse

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Northeastern University. Downloaded on April 08,2024 at 19:51:24 UTC from IEEE Xplore.  Restrictions apply. 



18 IEEE/ACM TRANSACTIONS ON NETWORKING

play a vital role when local DL methods are insufficient
due to environment changes, and the exhaustive beam search
is difficult due to mobility. Each twin in the Multiverse,
created in Wireless InSite simulator with different settings,
captures the real world with different cost/fidelity trade-off.
Accordingly, each twin prepares a beam selection dictionary
for a quick reference when the environment change is detected.
We validate the beam selection decisions by the Multiverse
through the experimental dataset, FLASH. Our evaluations
show that this Multiverse at the Edge correctly predicts the top-
K beams with upto 85.22% accuracy. Our Multiverse-based
method yields upto 90.79% improvement in beam selection
time compared to 802.11ad standard.
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