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Flying Among Stars: Jamming-resilient Channel
Selection for UAVs through Aerial Constellations

Guillem Reus-Muns, Mithun Diddi, Chetna Singhal, Hanumant Singh and Kaushik Chowdhury

Abstract—Wireless communication between an unmanned aerial vehicle (UAV) and the ground base station is susceptible to
adversarial jamming. In such situations, it is important for the UAV to indicate a new channel to the BS. This paper describes a method
of creating spatial codes that map the chosen channel to the location of the UAVs in space, wherein the latter physically traverses the
space from a given so called ”constellation points” to another. These points create patterns in the sky, analogous to modulation
constellations in classical wireless communications, and are detected at the BS through a millimeter-wave radar sensor. A constellation
point represents a distinct n-bit field mapped to a specific channel, allowing simultaneous frequency switching at both ends without any
RF transmissions. The main contributions of this paper are: (i) We conduct experimental studies to demonstrate how such
constellations may be formed using COTS UAVs and mmWave sensors, (ii) We develop a theoretical framework that maps a desired
constellation design to error and band switching time, including multi-user scenario-specific challenges, (iii) We compare our approach
against current FHSS technology and (iv) We experimentally demonstrate jamming resilient communications and validate system
goodput for links formed by UAV-mounted software defined radios.

Index Terms—UAV networks, Spectrum Access, Remote Sensing
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are utilized for military
operations, surveillance, disaster management, telecommu-
nications, monitoring, and cargo delivery [1]. All such roles
require continuous control, navigation, communication and
autonomy [2], requiring robust links between the UAV itself
and the ground base station (BS) [3, 4] or between dis-
tributed UAVs [5]. The degradation in wireless links caused
by adversarial actions, such as jamming or interference,
has been widely studied for diverse applications, such as
WSN [6] or wireless charging [7]. Moreover, UAVs have
also been proposed as a solution for many challenges that
cannot be solved by a single entity, i.e., natural disaster
management, cellular network offloading, distributed aerial
networks and Internet of Things (IoT). In such scenarios,
cooperation among groups of UAVs or swarms working
jointly towards a common goal has been widely studied for
different applications in recent years [8, 9, 10, 11, 12].
•Overview of the approach: Fig. 1 shows a sample scenario
where the RF link on channel X between the UAV and the
BS is severed due to a jamming attack. The UAV selects
a new channel Y for continuing the communication, but
is unable to let the BS know of its choice owing to the
active jammer. So, it uses an out-of-band control signaling
method involving relaying channel information by moving
between different spatial locations. Notice that X and Y
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Fig. 1: UAV communicates with ground station on Channel
X (step 1). When jammed, it moves through physical space
to encode new channel information in a constellation, de-
tected by mmWave sensor (step 2), expanded for 4-physical
locations. The communication link switches to Channel Y
free from jammer (step 3). Other UAVs communicate on
different channels (T-W) and will follow the same logic
(steps 1-3) if needed.

could represent any available transmission band that the
hardware of both the UAV and the BS could support (i.e.
sub-6GHz, mmWave, etc), making this solution applicable
to broadband jammers working in a certain band. Informa-
tion conveying modulation constellations are used in classi-
cal wireless communications, and our approach attempts to
map a similar concept into the UAV scenario. This creates
a low-bandwidth control channel that is resilient to the
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ongoing jamming attack. Note that this approach would
remain secure against a jammer equipped with its own
localization technology since the location-channel mapping
would be unknown on its side. Our approach relies on
accurate localization of the UAV in 2-D space (in fact,
any imprecision results in symbol error at the BS). While
sensing-aided communications system have been explored
in other works [13], for this paper we choose a single-chip
Frequency-Modulated Continuous Wave (FMCW) mmWave
radar.
•Research challenges: The idea of using spatial constella-
tions raises many unique research challenges at the intersec-
tion of wireless communication and robotics. Firstly, based
on an experimental study using a COTS mmWave radar TI
IWR1642, we identify the regions where the sensor accuracy
drops. This results is generating non-intuitive and irregular
shapes for the resulting constellation. For instance, in Fig.
1, a regular QPSK modulation used in classical RF would
have its points at the four vertices of a square, whereas
our approach traces arcs in the sky for the same points.
We answer the fundamental question of how these physical
constellations scale and what forms they take as the number
of bits required to represent additional information also
changes.

With the available degrees of spatial freedom, we must
also determine the separation between points, defined by
∆ρ-∆θ, which represent the symbol spacing between any
consecutive constellation points along the ρ or θ polar
coordinates axis, respectively. The need of using polar co-
ordinates is explained later in this paper. Moreover, the
problem of inter-point spacing has many non-intuitive el-
ements. Since the UAV must physically move from one
point to another, the separation between the constellation
points may be minimized to reduce the travel time, and
thus increase the information capacity. This is a distinction
not present in classic information constellation designs,
where the separation between symbols is always maximized
to reduce the BER. However, simply bunching the points
very close causes two problems: The natural hovering and
instability during flight can move the UAV close to an
incorrect location. It also decreases the ability of the ground-
based mmWave sensor to resolve the UAV locations at these
discrete points. Furthermore, we extend the feasibility of
such spatial mapping concept to a multi-UAV scenario,
where each UAV within a swarm can independently define
its own constellation and choose its location based on its
requirements. Thus, we address the challenge of design-
ing adjacent constellations that maintain a minimum flight
safety distance among UAVs.

Overall, designing such a physical constellation based
control signaling method involves many unique interdisci-
plinary conditions at the intersection of robotics, communi-
cation and sensing.

In summary, the main contributions in this paper are:

1) We introduce the concept of spatial modulation con-
stellation for UAVs and motivate its application as
a method for frequency band selection for jamming
resilience.

2) Through experimental traces and characterization of
the mmWave sensor, we design a two-step cluster-

ing algorithm that is able to process the positional
data and distinctly identify different UAVs with
minimal impact of noise.

3) We extend our framework to a multi-UAV sce-
nario while considering realistic implementation
challenges. We quantify the number of UAV a single
radar is able to track due to geometric constrains.
In addition, we analyze the multi-target localization
problem and test it with both real data as well and
a large-scale simulation setup.

4) We design a constellation scheme for N=2 points
in space, and propose generalization steps, by tak-
ing into account mmWave sensor performance and
UAV flight limitations. The approach identifies the
optimal separation distance that requires minimum
movement for the UAV, while ensuring robustness
in detection.

5) We compare our approach to Frequency-Hoppping
Spread Spectrum (FHSS), a common anti-jamming
technique currently employed in COTS UAVs.

6) We experimentally demonstrate the jamming re-
silience and implement our design on DJI M600
UAVs with Ettus B210 software defined radios for
the case of two constellation points. Additional sim-
ulation results are provided for larger constellation
sizes to demonstrate scalability.

2 RELATED WORK

Traditional anti-jamming techniques typically consider
power control or spread spectrum solutions. However,
these approaches usually use the resources inefficiently and
do not work well under dynamic spectrum environments
[14, 15]. Frequency-Hopping Spread Spectrum has usually
been proposed as an anti-jamming spread spectrum solu-
tion. For instance, [16] proposes Uncoordinated Frequency
Hopping (UHF), an approach resilient to jamming that
does not need agreement with the sender-receiver pair. The
authors in [17] describes a method to bypass the need
of pre-key establishment while [18] investigates ways for
spectrum-efficient frequency hopping. In UAV networks,
spread spectrum techniques have also been considered
and analyzed as a jamming resilient solution [19]. Mul-
tiple works conclude that FHSS hopping sequences can
be spoofed [20, 21] and their robustness is not guaranteed
due to high-energy wideband jammers blocking the entire
hopping space [22]. In addition, we note that all these
methods require wideband spectrum, whereas our approach
allows narrow-band, jamming free operation. Anti-jamming
in UAV networks also face the problem of mobility which
leads to highly dynamic spectrum usage for which multiple
game-theoretic approaches have been proposed [23]. More-
over, some recent recent works have explored reinforcement
learning techniques to counteract smart jammers in UAV
networks [24, 25].

Also, sensing-aided communications are commonly pro-
posed as a solution for challenges that classic communi-
cation systems cannot cope with. LIDAR for beam selec-
tion [26] or radar for mmWave beamtraining and tracking
[13, 27] are examples proposed in the literature. Addition-
ally, using motion and location for mapping certain modu-
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lation schemes was introduced in [28]. However, a position-
based control channel fully established through accurate
mmWave radar environment sensing and localization has
never been proposed before.

Millimeter Wave multi-target radar detection is typically
challenged by noise points and environment objects that
need to be accurately filtered out in order to properly
detect and localize the desired targets. Thus, clustering the
UAV-located point clouds needs to be tackled, for which
we propose Hi-DBSCANp. DBSCAN (Density Based Spatial
Clustering of Applications With Noise) [29] is a clustering
algorithm that has been modified numerous times for a wide
variety of applications [30, 31, 32, 33]. We come up with our
own DBSCAN modification which is able to cluster mul-
tiple UAV targets through a particular neighbor selection
that considers the error distribution of the mmWave radar
detection. In addition, we define a finer localization step to
estimate the position of every UAV within each point cloud.

3 SYSTEM DESCRIPTION

The system and scenario can be described in three major
components (Base Station, UAV(s) and Jammer):

• Base Station: Ground-based system equipped with
both a software defined radio (SDR) and a mmWave
radar to establish communication and accurately lo-
calize the UAVs, respectively. It continuously tracks
the UAVs location and selects a communication
channel according to their position within the pre-
established spatial constellations.

• UAV: Robotic system that establishes communication
with the BS through its on-board SDR. Every UAV
employs the spatial constellation method consider-
ing its spatial and communication capabilities. Every
time a link is jammed, the UAV will hover to another
constellation point to indicate the next frequency
band of operation, which is detected by the BS using
the mmWave radar.

• Jammer: Adversarial agent that actively tries to harm
the communication link between the UAV(s) and the
BS. We assume that the jammer is capable of inter-
fering in multiple frequencies but it will not have
the capability of jamming all the available bands.
Notice that our channel selection approach can be
effective against wideband jammers since each spa-
tial constellation point can map to any band in the
spectrum, from 6GHz to mmWave, if the hardware of
a certain UAV-BS pair supports it. Additionally, the
jammer can also be equipped with equivalent sens-
ing capabilities to the BS, that enable accurate UAV
localization and potentially learn the UAV position-
frequency mapping. We discuss this in Sec. 7.4 and
propose a solution based on pseudo-random permu-
tations to counteract sensing-aided jammers.

4 MMWAVE SENSING FOR UAV LOCALIZATION

We use a Texas Instruments IWR1642 evaluation module,
which is equipped with a 10.4x10.4mm mmWave sensor
and employs FMCW radar technology. The sensor works in
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Fig. 2: (a) Measured point cloud with a UAV at posi-
tion [0,6]m shows considerable noise and misclassification.
However, after setting MinPts based on our analysis in
Sec. 4.3, we successfully obtain a cluster of feasible points
around the UAV’s location (enclosed in the red bounding
box). (b) Point cloud number of points for different tmeas
and distance values.

(a) (b)

Fig. 3: Histogram for θ (a) and ρ (b) for the UAV point cloud
in Fig. 2a. Both variables exhibit a peak which is leveraged
for refining position estimation.

the 76-81GHz band with a chirp of up to 4GHz, and feeds
real time location information to a laptop that analyzes the
resulting point cloud. Also, we use a DJI Matrice M600 Pro
UAV with access to the low level flight controller telemetry
data. Furthermore, we integrated a real-time GPS kinematic
solution, called DJI D-RTK, in the UAV for cm-level GPS
accuracy, compared to variations in the scale of ±1.5m in
the horizontal plane otherwise.

4.1 Static UAVs

Consider a UAV statically supported by a tripod, approxi-
mately 1m from the ground, and placed at the coordinate
[0,6]m with respect to the origin [0,0] in the x-y plane,
where the sensor is located. The UAV propellers are set
to rotate at low rpm, and the sensor is configured to only
detect moving objects. The sensor reports valid spatial co-
ordinates (see red point cloud in Fig. 2a), but also many
additional noise readings. Interestingly, the point cloud is
not uniformly distributed around the target. Using polar
coordinates, we see the sensor is more accurate in terms of
distance from origin (say, ρ) rather than angle of the target
wrt to origin (say, θ). Indeed, the histogram of the point
cloud shown in Fig. 3 validates the comparatively greater
uncertainty in localization accuracy with respect to θ over ρ.
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Fig. 4: mmWave radar observed UAV hovering probability density function for ρ (a) and θ (b) using standard GPS
localization. Probability density function for ρ (c) and θ (d) using RTK localization.

This key insight is used for spacing the constellation points
in our approach, which results in an asymmetric form of the
constellation.

4.2 Hovering UAVs
When a UAV is set to operate a given point in 3-D space, it
shows slight displacement over time in all three dimensions.
We next determine if this unpredictable hovering motion
can potentially result in the mmWave sensor mis-detecting
the target constellation point. For the purpose of this work,
we focus on a 2-D plane. We conducted an extensive data
collection campaign using a mmWave radar while flying the
UAV at coordinates with different ρ values (fixing θ = 0◦)
from 2m to 12m in steps of 0.5m and 2 minutes per point.
The same experiment is repeated for different θ coordinates,
from −32◦ to 32◦ in steps of 4◦, keeping ρ constant. The
benefits of using D-RTK can be immediately seen in Fig. 4,
giving an increased accuracy of both ρ and θ estimation,
respectively, when the RTK is active in (c) and (d), versus
using classical GPS in (a) and (b). Additionally, we leverage
the fact that the distribution of the hovering error along both
variables (ρ and θ) follow a Gaussian distribution in Sec. 6.

4.3 Accurate Real-time Localization
Our goal here is to accurately identify the constellation point
from the data clouds obtained by the mmWave sensor. We
use DBSCAN [34] as the starting point. DBSCAN groups
together sets of points based on the region density, and at
the same time, is able to detect outliers with low run-time
overhead. In addition, it can be used in a wide range of
cluster shapes (i.e. linear, concave, circular, etc.). We make
two main contributions here: (i) we accurately initialize the
parameters of the DBSCAN algorithm using measurement
studies which are also seen in this section, and (ii) we reduce
uncertainty with a novel weighted histogram approach to
create Hi-DBSCAN, which increases accuracy over the stock
algorithm.
•DBSCAN tuning for UAV detection: The DBSCAN al-
gorithm has three main parameters: (i) ε, a measure of
radius that defines the circular neighborhood around the
true center of the UAV. Any measurement point within this
circle is called as an ε-neighbor. (ii) MinPts, the minimum
number of neighboring points a true UAV location should
have in order to not be classified as noise. (iii) Dist, the
maximum distance at which the mmWave sensor should

detect measurement data. An inaccurate configuration of
ε and MinPts would result in undesirable performance if
not properly tunned [35]. The parameter ε can be trivially
set from the dimensions of the UAV. Similarly, we can
set the UAV flight boundaries to directly compute Dist.
MinPts, on the other hand, is a function of the frame
rate of the sensor (i.e., samples produced per second), the
time over which the samples are collected (tmeas), and the
total number of points obtained R, which include legitimate
signal reflections from the UAV, along with noise and radar
artifacts.

For a fixed frame rate, R increases linearly over time, as
expected. Moreover, as we show in Fig.2b, R is also distance
dependent. In order to characterize its dependency, we fit
an exponential function curve to our data (M = aebd,
where d is distance and a and b are the parameters to be
estimated). Fig. 2b shows the obtained fitting curves for
different tmeas values. Thus, UAVs at different distances
create different density point clouds. The lowest density
areas give the lower bound on the performance of the
clustering algorithm (i.e., if the UAV is detected accurately
in low density areas, it is highly probable that will also be
detected in more dense areas.). Thus, we define MinPts as
MinPts = κM(tmeas,Dist), where κ is a scaling factor.
In our experiments. We set κ to 0.5 under the assumption
that at least half of the detected points are contributed by
the UAV at a given location. Fig. 2a shows how properly
tuning the MinPts parameter directly identifies the candi-
date points (in the red box) while all other external points
are labelled as noise, unlike the case with a naive MinPts
value, where the clustering predicts there are 3 extra UAVs.

•Weighted histogram analysis: DBSCAN outputs clusters,
each containing a cloud of candidate UAV location points.
However, our goal is to ultimately estimate a single lo-
cation for the UAV. Thus, we define a second process-
ing stage, which aims to refine the position estimation
by performing a weighted histogram analysis. For every
point cloud we make the following observation: (i) Points
with higher received power are more likely to be the true
location of the UAV, and (ii) Points in every cluster are
more densely distributed around the true location. Thus,
we define a weighted histogram, using the received power
as the weights:
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Hi =
mi∑

m=1..M
pm × wm

(1)

mi =
∑
i∈B

pi × wi (2)

Where Hi is the weighted histogram, mi is the sum of
the weighted points at bin i, M is the number of points
in the cluster, B defines the range of bin i and wi is the
weight applied to every point pi. Consequently, the final
estimated point is d = [θe, ρe], where θe = maxθH(θ) and
ρe = maxρH(ρ). In Fig. 3 we see how both H(ρ) and H(θ)
show a clear peak, which is known to match the UAV true
location.

4.4 Revisiting DBSCAN

In the previous subsection, the design of Hi-DBSCAN as
a two step clustering algorithm is explained. In this sub-
section, we take the legacy DBSCAN neighbor search and
modify it taking into consideration the UAV radar detection
characteristics. Also, we provide deeper insights on the
hyper-parameter tuning within our theoretical formulation.

As mentioned in Sec. 4, the error is unevenly distributed
along the polar coordinates. However, this property runs
unexploited in the implementation of DBSCAN used pre-
viously, where the euclidean distance is used as the metric
to group neighboring data points. Thus, we notice how the
geometry of the radar-data clusters (Fig. 2a) does not match
the geometry of the regions generated by an euclidean
distance metric, which are circular with radius ε (Sec. 4.3). In
order to cluster this kind of data, circular regions might be
problematic because they cannot deal with the asymmetric
nature of the radar error along the different polar coordi-
nates. Thus, we propose to modify the distance metric used
in DBSCAN such that it flexibly creates neighbourhoods
along ρ and θ.

For instance, consider the case that DBSCAN is using the
Euclidean distance to compute the neighbors of a certain
data point. Then, all points at a distance < ε will be
contained within the boundaries defined by a circular area
of radius ε:

De(ε, xc, yc) = {(xi, yi) ∈ R2,∀i :√
(xi − xc)2 + (yi − yc)2 < ε}

(3)

where (xc, yc) are the Cartesian coordinates that define
the center of the region. Following the same geometric
interpretation, we define a new region that is bounded
independently along the two polar axis (P(ερ, εθ)), which
can be defined as:

Dp(ερ, εθ, ρc, θc) = {(ρi, θi) ∈ R2,∀i : |(ρi − ρc)| < ερ,

|(θi − θc)| < εθ}
(4)

where (ρc, θc) are the Polar coordinates that define the
center of the region. Notice that while De is defined through
a single parameter (ε), Dp is bounded by two different
parameters (ερ, εθ)) along the ρ and θ coordinates respec-
tively. From now on, we will use the notation DBSCANe

and DBSCANp to refer to to the different DBSCAN imple-
mentations with region boundaries defined as De (3) and
Dp (4) respectively. The prefix Hi- (Hi-DBSCANe) is used
to indicate that the weighted histogram step in Sec. 4.3 is
also used and consequently the algorithm outputs singular
locations instead of point clouds.

Next, we fit the proposed modification into the rest of
the already existing clustering framework. As mentioned in
Sec. 4.2, each data cluster follows an independent Gaussian
distribution along each Polar axis. Additionally, in Sec. 4.3,
we show how MinPts can be expressed as a function of
M(tmeas,Dist), represented by the parameter κ. Then,
we leverage these two properties to provide a theoretical
formulation for showing the impact of MinPts (and in
turn κ as of κM(tmeas,Dist)), εθ and ερ. First, consid-
ering MinPts = κM(tmeas,Dist), κ can be interpreted
as a parametrization of the total point cloud precentage
originated at a certain UAV location that will fit into the
clustering region (i.e. Dp), expressed as:

κ =

∫ ερ

−ερ

∫ εθ

−εθ
p(ρ, θ)dρdθ (5)

where p(ρ, θ) represents the 2D probability density distribu-
tion of the point cloud in the Polar coordinate axes. Given
that ρ and θ are statistically independent and both follow a
Gaussian distribution:

κ =

∫ ερ

−ερ
p(ρ)dρ

∫ εθ

−εθ
p(θ)dθ

=

(
Q
(−ερ
σρ

)
−Q

(
ερ
σρ

))(
Q
(−εθ
σθ

)
−Q

(
εθ
σθ

))
=

(
1− 2Q

(
ερ
σρ

))(
1− 2Q

(
εθ
σθ

)) (6)

Then, for ερ = γσρ and εθ = γσθ :

MinPts = (1− 2Q(γ))
2M(tmeas,Dist) (7)

In the following sections, the performance improvement
of Hi-DBSCANp over Hi-DBSCANe will we analyzed on
both real and simulated data.

5 UAV SWARM DETECTION

In this section, we extend the UAV detection and data
clustering approach developed in Sec. 4 to a multi-UAV
scenario. While the single user scenario is developed in
the previous section, we extend the spatial coding concept
to a swarm of coordinated UAVs. First, we discuss the
geometrical limitations due to space constraints as well as
radar capabilities. Second, we study our detection algorithm
applied to large-scale UAV deployments through simula-
tion, as well as using real radar data for a smaller number
of UAVs.

5.1 Single-radar maximum swarm users

Consider a UAV swarm sensed by a single BS, wherein each
UAV simultaneously communicates its preferred channel by
independently traveling to its matching constellation point
location. The first problem that we tackle is determining the
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Fig. 5: (a) Imax increases with ρrmin due to the dependency in (10), (b) ρrmax impact on Imax for BPSK-like and QPSK-like
constellations, (c) Clustering accuracy comparison between DBSCANe and DBSCANp.

TABLE 1: List of parameters values

Symbol Definition
∆ρ/θ Inter-symbol separation along the ρ/θ axis
M Radar number of points estimating function
κ Scaling Factor ofM
MinPts DBSCAN minimum points to form a cluster
Hi Weighted histogram in bin i
mi Sum of the weighted points at bin i
B Range of bin i
Aρ Total space occupied for a single UAV along ρ axis
Aθ Total space occupied for a single UAV along θ axis
∆s UAV safety distance
θr
min/max

Minimum/maximum boundary of the radar
along the θ axis

ρr
min/max

Minimum/maximum boundary of the radar
along the ρ axis

F Area bounded by the field of view of the radar
Imax
ρ/θ

Maximum number of UAVs with Aρ/θ that can fit
in F along the ρ/θ axis respectively

Imax Total maximum number of UAVs that can fit in F
p UAV location modeled as a Random Variable
si Polar coordinates for symbol i
Ri Region defined by si
Pne Probability of error of symbol n
T Average travel time

maximum swarm size Imax, which depends upon the angu-
lar range of the mmWave sensor as well as the constellation
size.

We start by defining the extremities of the constellation
generated for a given UAV in polar coordinates, defined in
terms of Aρ and Aθ as follows,

Aρ = ρmax − ρmin + ∆sρ (8)
Aθ(ρ) = θmax − θmin + ∆sθ (ρ) (9)

where ρmax/min and θmax/min are the highest/lowest
values for a given UAV constellation, along radial and
angular directions, respectively. In a practical deployment,
we also need to maintain a minimum distance between
UAVs to ensure a safe buffer zone during flight. Thus,
we define ∆sθ/sρ to represent this buffer space along the
θ/ρ axis, respectively. We note that ∆sθ is defined as a
function of ρ. This is due the fact that the minimum in-flight
separation is defined in terms of absolute distance and the

angular occupation is relative to the observation point. Such
dependency can be expressed as:

∆sθ (ρ) = 2 arcsin
∆sρ

4ρ
(10)

While ρ/θmax/min are defined by the constellation, we
assume ∆s to be constant and independent of each UAV
capabilities. Next, we define the Field of View (FoV) of the
radar, F , as:

F =

{
θrmin < θ < θrmax
ρrmin < ρ < ρrmax

(11)

where θr and ρr correspond to the operational boundaries of
the radar along angular and radial directions, respectively.
Then, assuming Aρ and Aθ(ρ) are constant for any given
member of the swarm, the maximum number of UAVs that
can fit in the FoV of a sensor is:

Imaxρ =

⌊
ρrmax − ρrmin

Aρ

⌋
(12)

Imaxθ (ρ) =

⌊
θrmax − θrmin

Aθ(ρ)

⌋
(13)

If Imaxθ (ρ) were independent of ρ, Imax would simply
be the product of Imaxρ and Imaxθ . However, we first find

the lower bound as the worse case Aθ(ρ)
∣∣∣
ρrmin

. This can be

obtained in closed form as:

Imaxmin = Imaxρ Imaxθ (ρrmin) (14)

Furthermore, the maximum Imax is obtained from:

Imax =

Imaxρ −1∑
l=0

Imaxθ (ρrmin + lAρ) (15)

where Aθ is computed every (ρrmin + lAρ). In Fig. 5a we
analyze the dependency of Imax over ρrmin for a BPSK-like
constellation (2 symbols). Here, ρmax = ρmin + 1.5, ∆s =
1m (Aρ = 2.5m) and Aθ = 9 + ∆sθ (ρ). Although ρrmax −
ρrmin is kept constant, it can be observed how Imax increases
with ρrmin. This is can be easily justified considering that
∆sθ decreases with ρ (Eq. 10) which in turns makes Aθ(ρ)
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Algorithm 1: Hi-DBSCANp

Input: D, tmeas, fps, ερ, εθ ;
MinPts = κM(tmeas, dmax) ; . Adaptive
MinPts
C = DBSCANp(D,MinPts, ερ, εθ) ; . C
contains input data D clustered in N
clusters

for n← 1 to N do
Dn = D ∈ Cn;
Compute Hnρ (Dn);
ρne = max(Hnρ );
Compute Hnθ (Dn);
θne = max(Hnθ )

Return: ρe, θe ; . ρe, θe are vectors
containing the N estimated polar
coordinates for each UAV location.

decrease and both Imaxθ (ρ) and Imax increase (Eq. 9, 13, 15).
For comparison purposes, in Fig. 5b we show Imax for two
different constellation sizes and different radar field of view
sizes (F ) along the ρ axis, where ρrmin is fixed and ρrmax
takes different values.

5.2 Multi-UAV clustering
While the above section describes the theoretical maximum
number of possible UAVs that can be accommodated in
the FoV of the mmWave radar, there is also the additional
concern of being able to isolate point clouds originating
from multiple different UAV targets.

To address this, we examine the performance of the
clustering algorithm in Sec. 4.4. Algorithm. 1 shows the
pseudo-code for Hi-DBSCANp as it applied to multi-UAV
case. Notice that Hi-DBSCANe would run the same logic,
with DBSCANe instead of DBSCANp. First, we create a
dataset of up to 4 flying UAVs to empirically demonstrate
successful detection and localization of multiple UAVs.
Second, we compare the performance of the two different
Hi-DBSCAN implementations, quantifying the meaningful
performance improvement introduced by the modification
described in Sec. 4.4. Finally, we use the formulation in the
previous subsection to test the multi-UAV clustering large-
scale performance through simulation.

5.2.1 Experiments
Our validation study consists of flying 1-4 DJI M100 UAVs
while simultaneously collecting data with the TI IWR1642
mmWave sensor on the ground. To ensure in-flight safety,
we set the UAVs at a minimum flying distance of 2m. Then,
we use Hi-DBSCANe/p to post process the data and com-
pare its performance for different distance metrics (Eq. (3)-
(4)) and number of UAVs. Also, we show how our adaptive
method to set MinPts detailed in Sec.4.4 works efficiently
in case of multiple UAVs.

In Fig. 5c, we show the statistical accuracy of
Hi-DBSCANe/p for generating distinctly separable point-
clouds and then accurately mapping each cloud to a specific
UAV location. We run this analysis for two tmeas values
and set MinPts as explained in previous sections. For each

TABLE 2: Simulation parameters

Parameters Value
∆s 1m

ρmax − ρmin 1m
θmax − θmin 18o

θrmax 35o

θrmin −35o

ρmaxr 4m
ρminr 15m
Aρ 2m
Aθ 18o + 2 ∗ arcsin ∆s

4∗ρ

case, we compare the number of obtained clusters with the
ground truth (number of UAVs flying). It can be observed
how the accuracy obtained with Hi-DBSCANp is superior
to Hi-DBSCANe for all different scenarios. As mentioned
in Sec. 4.4, this is due to the modification on the region
definition (Eq. 4) taking into consideration the radar er-
ror distribution enhances the UAV clustering performance.
Hi-DBSCANp achieves 100% accuracy with tmeas = 1s
for any I. Reducing tmeas reduces the accuracy since the
accumulated samples that pass through the clustering algo-
rithm are reduced, which increases uncertainty. However,
for Hi-DBSCANp and tmeas = 0.5s we only see a reduction
of ≈ 0.5% in the I=4 case. The presented results help verify
the proposed theoretical formulation introduced in Sec.4.4.
Thus, this experiment on a real deployment with varying
number of UAVs shows how Hi-DBSCANp permits extend-
ing the spatial constellation to a multi-UAV scenario. We test
Hi-DBSCANe/p performance on larger scale deployments
through simulation in Sec. 5.2.2.
•Multi-Target Hovering Probability Distribution: As men-
tioned in Sec. 4.2, the spatial probability distribution of
the UAV hovering motion follows a Gaussian distribution.
We leverage this in Sec. 5.2.2 for simulation, as well as
in Sec. 6, for a probability error analysis. We next extend
the previous result for a single target in Fig. 6a, where
we plot the obtained PDF along the ρ axis for three UAVs
flying simultaneously. We observe a Gaussian fit for every
empirical distribution for this multi-UAV scenario as well.
We observe similar results along the θ axis. This suggests
that our signal-target analysis can be extended for a multi-
UAV scenario, where independent Gaussian distributions
are obtained for every individual target.

5.2.2 Simulation
We performed limited real-world testing (using 4 UAVs)
on the performance of Hi-DBSCAN earlier. In this section
we extend the radar detection and UAV hovering analysis
with real hardware in Sec. 4 and 5, respectively, to create a
UAV detection simulator. First, we define the radar area of
operation F (11) given by the FoV. Next, we compute Imax

(15) given the area each UAV will occupy given a spatial
constellation. As mentioned in Sec. 5.1, we assume Aρ and
Aθ(ρ) to be constant for any UAV in the swarm. In addition,
the Imax UAVs are placed along F respecting the Aρ/Aθ(ρ)
spacing limitations. In order to simulate the radar-like data
centered at each UAV location, we take the statistics in Fig. 4
to generate multiple point clouds.

Moreover, we analyze the impact of σρ/θ on Hi-DBSCAN
accuracy (Fig. 6b-6c) using the simulation parameters listed
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in Table. 2. We observe how the accuracy only decreases
for considerably high σρ/θ values. When compared with
the results obtained in the characterization in Fig. 4c-4d,
(σρ ≈ 0.05m; σθ ≈ 0.9o) we see how Hi-DBSCAN can
cope with instabilities found in real deployments. Addi-
tionally, we also compare the performance of Hi-DBSCANe

and Hi-DBSCANp. Again, we observe how Hi-DBSCANp is
more robust to high sparse clusters, (σρ > 0.55; σθ > 4.5),
whereas Hi-DBSCANe’s accuracy reduces drastically.

6 CONSTELLATION LOCATION ERROR PROBABIL-
ITY

The unpredictable hovering introduces errors in the local-
ization process. We model the location of each UAV as a
random variable defined as p = (θ, ρ) using the polar coor-
dinate system. As discussed in Sec. 4.2, the UAV movement
along each axis follows a Gaussian distribution. In addition,
in Sec. 5 we showed how this property also applies for a
multi-UAV scenario. Assuming statistical independence, we
next discuss the means and variances of these variables: Let
si = (sθi , sρi) be the polar coordinates for a given symbol
i in a 2D plane. In an ideal case, the UAV location exactly
overlaps with a given symbol location, or at least, exhibits
a mean location µi equal to the constellation point, i.e.,
µi = si. Furthermore, let σi = (σθi , σρi) denote the vector
of standard deviations that defines the precision with which
a given UAV hovers around certain symbol coordinates. The
lower the σi, the more stable the UAV is. Since the UAV’s
position pi on any axis is assumed to be an independent
Gaussian random variable, while transmitting symbol i, this
can be expressed as:

pi = N (si,σiI), ∀i ∈ {1, 2, ..., N} (16)

where N stands for the number of different symbols in the
constellation. There is a symbol error anytime the hovering
displaces the UAV out of its feasible symbol region. Without
loss of generality, each symbol region Ri is defined as:

Ri =

{
αli < θ < αui
βli < ρ < βui

(17)

where α and β define the bounds on each of the axis and the
l and u respectively stand for the lower and upper bound that
define the Ri limits. While we provide a detailed analysis
for the case of N={2} next, higher order constellation sizes
are not included due to space constraints, though they
follow very similar steps. As the constellation design is not
only dependent on N but ∆ρ and ∆θ, a general symbol
error probability is hard to derive. However, in Sec. 6.2 we
develop a generic framework that accounts for the number
of neighbors of each symbol in order to compute the average
probability of error.

6.1 Analysis for N=2

The constellation can have two possible configurations,
where both symbols are placed either along the ρ or the θ
axis. In order to avoid redundancy, we derive the expression
for the θ case only, where sθ = {−∆θ

2 ,
∆θ

2 }. Here, we define
the probability of error as:

Pe =
∑

i={1,2}

P (pi /∈ Ri) =
∑

i={1,2}

P (βli > θi > βui )P (si)

(18)

=
∑

i={1,2}

P (βli > sθi + εθi > βui )P (si) (19)

We reformulate pi as the addition of a deterministic
value (si) and a random component (ε = N (0,σiI)). As the
symbols are equally probable with same error probabilities:

Pe =
1

2
2P (εθi > βui − sθi) = Q

(
βl1 − sθ1
σθ1

)
(20)

Where Q(x) =
∫∞
x

1√
2π

exp −t
2

2 dt is adopted to simplify
the expression. Finally, considering s as the constellation
point centered at θ = 0, then βl1 = 0, Pe = Q

(
∆θ/2
σθ1

)
.

Similarly, if both symbols were placed along the ρ axis
Pe = Q

(
∆ρ/2
σρ1

)
. This result matches with the BPSK proba-

bility of error through an AWGN channel, as expected.

6.2 Generalized formulation
We derived the error probability for the constellation size
(N=2) in Sec. 6.1. We next tabulate the error probability as
a function of the number of neighbors a given constellation
point has along ρ axis (nρ) and θ axis (nθ). Also, a given
symbol is considered as the neighbor of another one if it is
placed at a distance ∆ρ - ∆θ along the ρ - θ axis respectively.
We define the probability of error in terms of nρ and nθ
because this allows us to derive an expression for every
single symbol in the constellation and then compute total Pe
as the average. Table. 3 shows Pe(nθ, nρ) for every possible
(nθ, nρ) pair.

nθ nρ Pe(nθ, nρ)

2 2 1−
{[

1− 2Q
(

∆θ/2
σθ1

)] [
1− 2Q

(
∆ρ/2

σρ1

)]}
2 1 1−

{[
1− 2Q

(
∆θ/2
σθ1

)] [
1−Q

(
∆ρ/2

σρ1

)]}
2 0 2Q

(
∆θ/2
σθ1

)
1 2 1−

{[
1−Q

(
∆θ/2
σρ1

)] [
1− 2Q

(
∆ρ/2

σθ1

)]}
1 1 1−

{[
1−Q

(
∆θ/2
σθ

)] [
1−Q

(
∆ρ/2

σρ

)]}
1 0 Q

(
∆θ/2
σθ1

)
0 2 2Q

(
∆ρ/2

σρ1

)
0 1 Q

(
∆ρ/2

σρ1

)
TABLE 3: Pe expressions for different (nθ, nρ) pairs.

Given a constellation setup and the probability of error
for every symbol, the total probability of error for any
constellation can be expressed as:

Pe =
1

N

N∑
n=1

Pne (nθ, nρ) (21)

where Pne represents the Pe for symbol n. Notice how
every expression in Table. 3 depends explicitly on ∆ρ and
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Fig. 6: Multi-UAV probability density functions (I=3) (a). Hi-DBSCAN accuracy under different uncertainty regimes along
the ρ-axis (b) and the θ-axis (c).

∆θ . This will be relevant in the following section, where
the constellation design is explained. As mentioned earlier,
we model the location of a UAV in a multi-UAV scenario
as a random variable that follows an independent random
distribution. Our analysis is applicable to any multi-UAV
scenario, where every UAV has an independent value of Pe
based on its own hovering performance.

7 CREATING EFFICIENT CONSTELLATIONS

In this section, we describe in detail how to design the
spatial constellations for a given set of I UAVs. The optimal
set of constellation coordinates for each UAV is composed
of a set of N points (see Fig. 13), which we refer to as
p∗i , 1 ≤ i ≤ I . We aim to minimize the average travel
time (T ), which occurs when the inter-symbol distance is
also minimized. The parameters ∆ρ and ∆θ are selected
from the analysis in Sec. 6 using the generalization of error
probability obtained in Eq. 21 and Table. 3. As mentioned
above, the error directly depends on ∆ρ and ∆θ . Then, both
of these parameters are set so that Pe is kept below a certain
threshold ξ. Note that different UAVs may have different
flying performances, defined by the ∆ρi -∆θi pair, as well as
different probability of error demands, defined by ξi. Thus,
the problem can be formulated as:

min
P∗

I∑
i=1

Ti(N,∆ρi ,∆θi) ∀I ≤ Imax (22a)

such that: Pe ≤ ξi, 1 ≤ i ≤ I, (22b)
Γ = 1 (22c)

where, Γ =

{
1, if dmini,j > ∆s and (ρi, θi) ∈ F
0, otherwise

}
with, i 6= j, 1 ≤ i ≤ I, 1 ≤ j ≤ I .

where P∗ = {p∗1,p∗2, ...,p∗I} is the set of optimal constel-
lations that minimize the travelling time for each UAV, rep-
resented by Ti. The constraint (22b) ensures that the symbol
error rate for every constellation is upper bounded by the
threshold ξi. The constraint (22c), where dmini,j represents
the shortest distance between any point in constellation i

and j, prevents neighboring UAV constellations to get closer
than ∆s, as well as ensuring that every constellation point
is within the radar FoV region F .

From Sec. 4.1, the mmWave sensing accuracy is not
equally distributed along both the polar coordinate axes.
For instance, considering Fig. 13, the optimal constellation
for N=8, uses 4 values in the ρ axis while only 2 along θ
axis. If we analyze this asymptotically, the optimal design
may require placing all the N points along one of the axis.
Then, we define a grid of L=N2 elements which represent
the solution space for our problem. In a multi-UAV scenario,
if any of the L locations overlaps with another constellation
from another UAV, those will not be considered in order
to avoid potential collisions, as defined in ((22c)). For a
given starting point (pc = [θc, ρc]), the grid range is defined
as {[θc − ∆θ(N−1)

2 , θc + ∆θ(N−1)
2 ], [ρc, ρc + ∆ρ(N − 1)]}

(see Fig. 13). The optimal constellation (p∗) is the set of
N elements out of L for which its average distance is
minimized, i.e., from (22a). To solve this, we propose (i) an
exhaustive search within a reduced constellation candidates,
where finding the reduced set is equivalent to solving the
combination sum algorithm, and (ii) a reduced complexity
heuristic algorithm for faster in-flight constellation calcula-
tion. Moreover, we show how the approach of exploring
only the reduced set narrows the complexity drastically in
comparison to the brute-force exploration. Additionally, we
compare the performance of our heuristics to the exhaustive
search approach and analyze their complexities.

7.1 Exhaustive exploration on feasible constellations

A brute-force solution that would find the best constellation
after considering all the options is not feasible due to its
complexity. A total of

(N2

N

)
different constellations would

need to be considered, which represents an intractable
solution. In order to reduce the solution complexity, only
the constellations with symbols spaced by ∆ρ/θ will be
considered. For example, for a constellation with 4 symbols
(N = 4), a brute-force method would compare a total of(16

4

)
= 1820 possible constellation combinations. Instead,

we reduce the constellation search space to a feasible set
consisting of only 5 unique constellations: (4, 0),(3, 1),(2,
2),(2, 1, 1),(1, 1, 1, 1). Every constellation is expressed as the
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number of constellation points within each row, where all
constellations point have the same ρ value, of the N × N
grid. For instance, a 2-by-2 QPSK-like constellation with
constellation point separation ∆ρ/θ will be referred as (2, 2).
Notice that all the excluded constellation candidates will
have at least a pair of symbols separated by more than the
minimum symbol separation ∆ρ/θ, increasing the average
constellation distance. For instance, a constellation with its
4 symbols placed at every vertex of the N × N grid would
never provide the shortest average distance constellation.

For generalization purposes, we define the set of con-
stellation candidates of size N with minimum inter-symbol
distance as CN . Notice that in the previous example, the
elements in the described set represent all the possible ways
to express N = 4 as a sum of positive integers. This is
expected since the sum of constellation points placed at
every row should be equal to the constellation size N . Thus,
the problem of finding CN is equivalent to finding all the
possible ways to arrange the N constellations points within
theN rows of anN×N grid. This is analogous to solving the
combination sum problem with a targetN . The combination
sum problem finds all the unique combinations of non-
ascending positive integers that sum to a certain target value
[36]. The total number of constellations of size N (|CN |) can
be counted as:

|CN | =
N∑
i=1

pi(N) (23)

pi(N) = pi(N − i) + pi−1(N − 1) (24)

where pi(N) is the number of ways in which an integer N
can be expressed as the sum of exactly i positive integers.
pi(N) does not present a close form formula and is typically
computed following the recursion in Eq. 24

Then, given that computing the average distance for
every single constellation requires N2−N

2 operations, the
overall complexity becomes O(N2 × |CN |). As mentioned
before, |CN | does not present a closed form formula [37].
However, in Fig. 7b we show that for the range of interest
(N ≤ 64), the complexity fits a polynomial fit of degree 4
(N4). Then, the complexity can be approximated to O(L3).
In contrast, notice that the brute-force search presents a
complexity of O(L×

(L
N

)
). In Fig. 7a, we numerically show

a comparison for the number of cases that a brute-force
search and our combination sum approach require. It can
be observed that the number of cases considered is multiple
orders of magnitude.

7.2 Heuristic exploration
In order to further reduce the complexity of the exhaustive
search presented above, we present an heuristic algorithm
that works under the assumption that the inter-symbol dis-
tance is reduced if the set of points closer to pc are picked.
Then, it will only be required to compute the distance from
pc to the L points in the N ×N grid to select the N closest
ones. As only one set of distances needs to be calculated,
the complexity is reduced to L operations (O(L)). Thus,
the algorithm complexity has been reduced from (O(L3))
to (O(L)). We complete the analysis in Sec. 11 by comparing
the average distance constellation obtained through both
methods.
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Fig. 7: Number of cases comparison for different constella-
tion search algorithms (a). Although |CN | does not have a
closed form solution, the numerical values for the range of
interests in this paper fits a polynomial curve of order 4.

7.3 Multi-UAV constellations

The complexity of computing multiple constellations will
depend on the number of UAVs as well as each con-
stellation size. Assuming that all UAVs employ the same
constellation size, the complexity for the combinatorial and
heuristic exploration would be O(IL3) and O(IL) respec-
tively. However, the formulation throughput this paper has
been defined so that each UAV can accommodate different
constellation size independently. In that case, the complex-
ity will be mostly impacted by higher order modulations
(Lhm). Then, the complexity for the exhaustive exploration
can be expressed as O(IhmL

3
hm). In contrast, the heuristic

complexity follows a O(IhmLhm) complexity.

7.4 Pseudo-Random Symbol Mapping

Every spatial constellation point is directly mapped into a
specific frequency band. We formally define such mapping
as a bijective function M : {0, 1}M −→ F , which takes as
an input an M -bit representation of a constellation symbol
(P ) and returns a certain frequency band from the set F ,
that has a total of N values, one for each center frequency.
While the mapping M is assumed to be known at both
ends of the communication link, it must be kept private
to the jammer at all times. Otherwise, a jammer equipped
with equivalent sensing capabilities, could easily infer the
future transmission band and tune its disruptive actions
accordingly. Similarly, even if M was not known a priori
by the attacker, the linear mapping could easily be learned
by the jammer if it were kept constant in time. Thus, an
scheme that will update M in time on both the BS and
UAV seems necessary to stop jammers from being able to
learn a constant mapping between the constellation points
and available channels. To do so, we propose a method
that periodically pseudo-randomly permutates the original
linear mapping M. In particular, we extend from prior
works in block-ciphers, which generate pseudo-random
permutations uniquely identifiable through a fixed key k
[38, 39]. We formally introduce such mapping as:

M : {0, 1}M × {0, 1}k −→ F F = {f1, ..., fN}; fn ∈ R
(25)
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Fig. 8: FHSS pattern captured from a DJI M600 RC (top) and
a DJI Mavic Pro 2 (bottom).

where M is a function that takes an M-bit representation
of a constellation point (P ) and a k-bit key (K). For every
key K ∈ {0, 1}k, there is a mapping MK : {0, 1}M −→ F
that is a pseudo-random permutation of any other mapping
with a different key K. The key K will incrementally be
updated on both ends of the communication link every time
the UAV needs to move into another constellation point
(Kt+1 = Kt + 1). Thus, every time the BS detects a new
spatial constellation point, the key K will be incremented
by a unitary value. Notice that through this method, the
mapping M will remain unknown to the jammer and the
ability to sense a certain UAV location will provide no
additional information.

8 UAV TRANSMISSION SIGNAL ANALYSIS

For completeness of this work, we analyze the RF technol-
ogy employed on commercial devices in both uplink and
downlink. To do so, we used commercial DJI projects as
well as a Tektronix RSA507A spectrum analyzer for proper
data visualization.

8.1 Uplink

Commercial devices employ FHSS as a robust RC to UAV
(uplink) communication solution. For instance, in Fig. 8 we
show the RF spectrum of the captured transmissions from
two different DJI controllers in the 5.725-5.825GHz band.
The RC uses a spread spectrum of 70MHz with hops of
5MHz (M600) and 2MHz (Mavic Pro 2). The 2.4GHz band
is also utilized, where a bandwidth of up to 80MHz is
used and a minimum hopping distance of 2MHz between
subcarriers. This numerical values will be of relevance for
the comparison conducted in the following subsections.

8.2 Downlink

UAVs typically communicate periodically with the RC in
order to report telemetry data or battery level among oth-
ers. In the most recent years, most UAVs also dispose of
video streaming capabilities which require high throughput
and low latency links. Based on the application require-
ments, such transmissions may vary in bandwidth and

Fig. 9: Downlink transmission of two DJI M600 UAVs (top).
Spectrogram visualization of the downlink bursty transmis-
sions (bottom).

transmission periodicity. In this subsection, we analyze the
downlink of a DJI M600. These devices transmit in the
ISM band to communicate with the RC. More specifically,
the 2.401GHz-2.481GHz band is divided into eight 10MHz
channels, where each UAVs picks one of them based on their
proprietary interference analysis protocol. In Fig. 9, we show
a spectrum visualization of two DJI 600 transmissions. It
can be observed that every different UAV selects a different
transmission band to avoid mutual interference. Moreover,
we also observed that the UAV accesses the medium at a
fixed periodicity (≈50Hz), as we show in the spectrogram
in Fig. 9.

9 PROPOSED ANTI-JAMMING APPROACH VS.
FHSS
In this section, we compare our frequency switching ap-
proach to FHSS, which is commonly presented as a jamming
resilient solution, as discussed in Sec. 8.1. Also, we analyze
under what scenarios our method is superior to the current
technology used in COTS devices.

9.1 Latency formulation
We analytically show how our approach of switching the
transmission to another band results in reduced overhead
compared to FHSS under partial jamming conditions. First,
we define RSC as the bitrate of a single carrier transmission
with bandwidth BSC . RSC represents the achievable bit
rate for every available channel that is mapped to a certain
constellation point. Similarly, we define the FHSS bitrate
RFHSS as a fraction of RSC :

RFHSS = RSC
BFHSS

BSC
(26)

where BSC is the bandwidth used for a single carrier
transmission and BFHSS is the transmission bandwidth for
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Fig. 10: Latency to transmit a stream of 1 Mbit of data
versusBJ (a). Data transmitted over time for differentBTFHSS
(b). For this simulation, we set RSC=10Mbps; BSC=10MHz;
BFHSS=1MHz.

a single sub-carrier of a FHSS system. Notice that BFHSS
defines the frequency separation between to subsequent
FHSS hops and not the overall used spread spectrum, which
we define asBTFHSS. Next, consider the attack model in Fig. 1,
where the UAV and the BS switch to another channel if the
ongoing communication link is jammed. Here, we explore
whether using an spread spectrum technique such as FHSS
is provides better performance compared to the proposed
approach. In the latter case, the transmission rate of the
jammed link (RJSC ) reduces to zero, whereas the FHSS will
see its throughput reduced based on what percentage of
BFHSS is under severe interference. The effective FHSS rate
(RJFHSS) under an interferer jammer with bandwidth BJ can
be expressed as:

RJFHSS = RSC
BFHSS

BSC

(
1− BJ

BTFHSS

)
(27)

Next, we formulate the latency incurred to transmit a
certain bitlength in both approaches. In addition, we find
a threshold in terms of T for which our approach is supe-
rior over FHSS. Under active jamming conditions, consider
a data packet with length D. Then, the latency for each
method is expressed as:

LSC = T +
D

RSC
(28)

LFHSS =
D

RJFHSS
(29)

where the first term in LSC represents the overhead in-
troduced by the UAV travelling from one constellation point
to another and the second term is the transmission time at
a rate of RSC . LFHSS shows the transmission at the FHSS
jamming-reduced rate (Eq. 27). Then, we analyze under
what conditions our frequency switching approach provides
a better response the the jamming attack (LSC < LFHSS).
From (26-29), we obtain the following inequality:

T ≤ D

RSC

 BSC

BFHSS

(
1− BJ

BTFHSS

) − 1

 (30)
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Fig. 11: UAV System Architecture

which indicates the condition that T needs to fulfill such
that our approach provides a superior better performance
compared to FHSS. We derive this relationship terms of
T , since it is the metric that quantifies the overhead in-
troduced by our channel switching approach. The inflexion
point where the equality in (30) holds corresponds to the
intersections betweenRSC andRFHSS in Fig. 10. While the T
values in Fig. 10 are for a constellation with 2 points (N = 2)
and have been obtained from the system implementation
described in Sec. 10, notice that (30) generally describes the
inequality in terms of the different communication parame-
ters.

Furthermore, in Fig. 10a we analyze the impact of BJ
under the requirement of D=1Mbits. It can be observed
that RSC is constant throughout all BJ values. This is
justified due to the fact that the overhead of switching into
a different channel is dictated by the UAV movement into
another spatial constellation point (T ). However, the latency
remains constant with BJ since the communication resumes
in a jamming-free channel. In contrast, the FHSS latency
(RFHSS) increases with BJ , given that the

(
1− BJ

BTFHSS

)
term

in Eq. 27 approaches 0 for increasing BJ . In addition, in
Fig. 10b we show how RSC remains zero for a duration of
T but achieves a higher bit rate compared to FHSS when
the transmission starts. Also, we note that the overhead
of T is only present while the transmission moves into a
jamming-free channel, achieving a constant latency of D

RSC
afterwards.

10 UAV SYSTEM IMPLEMENTATION

10.1 Hardware Overview
We integrated Nvidia TX2 with Connecttech Orbitty carrier
board to act as an on-board computer on commercial off-
the-shelf (COTS) developer friendly DJI drones (M600 Pro,
M100). Robotic Operating System (ROS) was employed in
order to establish interaction with the UAV and be able to
send control inputs. ROS is a middleware used for message
passing in a publish-subscribe pattern and it hosts a suite of
software frameworks [40, 41]. The communication between
the control ground station (Ubuntu 16.04 laptop) and the
UAV-mounted computer is established through a common
WiFi access points working on the 2.4GHz ISM band. Addi-
tionally, we integrated DJI real-time kinematic (D-RTK) GPS
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Fig. 12: Waypoint navigation diagram. s represents the initial
UAV location, t be target waypoint and u is UAV location at
time, t.

solution with an M600 pro (Fig. 4). D-RTK enhances both
navigation and position lock during the hovering state. This
was done for the hovering and radar accuracy comparing
purposes in Fig. 4.

10.2 Software Architecture Overview
As mentioned above, ROS was employed for sending con-
trol messages. While single ROS master implementations
can successfully handle multiple machines in a LAN, its
centralized approach is prone to errors. To overcome this,
we used the fkie-Multimaster, which is a decentralized
implementation where each host runs its own master and
all masters are synchronized. In order to ensure the system
level time synchronization, the ground control station acts
as an NTP time server.

While a few 3D navigation packages for aerial vehicles
have been developed, they are mostly designed for open
source hardware and open source software protocols, and
would not fit our requirements. For that purpose, we im-
plemented our own modular 3D navigation software stack
capable of working with DJI ROS SDK, which we will refer
as Simplenav. An overview of our UAV control system
implementation is shown in Fig. 11. Simplenav capabili-
ties, among others, are telemetry data fusion for 6-degree
of freedom state at 100Hz (State Estimator), upsampling
control signals from 10Hz to 50Hz (Base Controller) and set
GPS location to constellation points (Constellation Manager
in coordination with Navigator Module). Further controller
details and PID implementation details will be discussed in
the following subsection.

10.3 Waypoint Navigation Overview
We use the Universal Transverse Mercator (UTM) projection
of the GPS fix in East-North-Up (ENU) based coordinate
system as localization aid. For that, we define the UAV take
off location as the ENU coordinate origin, Oenu. This allows
us to define the necessary position vectors and distance
metrics for the UAV starting point (s), the UAV location
at time, t be (u) and the target waypoint (t), which can be
observed in Fig.12 and mathematically expressed below:

dst = |~renus − ~renut |
dsu(t) = |~renuu (t)− ~renus |
~renuut (t) = ~renut − ~renuu (t)

dut(t) = |~renuut (t)|

(31)

The tracking error ~renuut (t) is computed in ENU frame.
Thus, it needs to be projected into the UAV body frame
Forward-Left-Up (FLU) (~efluut (t)). The projection is com-
puted according to:

~efluut (t) =

[
cos Ψyaw(t) sin Ψyaw(t) 0
− sin Ψyaw(t) cos Ψyaw(t) 0

0 0 1

]
~renuut (t) (32)

where Ψyaw(t) is the yaw angle with respect to the East
direction in ENU coordinate system.

10.4 Controller Formulation
As mentioned in Sec. 7 (Eq. 22a), we aim to minimize the
travel time (T ) between constellation points under realistic
kinematic constraints. For commodity, we define:

tcr = tacc + tconst vel + tdec

T = tcr + tos
(33)

where tcr is the travel time from the start location until the
UAV enters the capture radius (dcr) of the destination, tos
is the overshooting error correction time and tacc, tconst vel
and tdec are the acceleration, constant velocity and deceler-
ation travel times respectively.

Next, the error of the UAV when travelling to a certain
waypoint also impacts the problem formulation and has
to be bounded (Eq. 22b) to properly design the spacial
constellations. This error will be referred to as residual error
(eres) and is defined as the euclidean distance between the
destination constellation point and the UAV’s location after
UAV considers it has reached it. The capture radius (dcr) as
defined in Fig. 12 is a design parameter that plays major role
in the ultimately achieved eres of the controller. Generally,
dcr is determined mainly on factors like frequency of local-
ization sensor (RTK GPS at 5Hz), frequency of control cycle
(10Hz) and velocity saturation limits of the UAV.

Typically, PID controllers are tuned to optimize one of
the two mentioned metrics, T or eres, which is to prioritize
low residual error in detriment of higher travel time, or
vice-versa, higher residual error when low travel time is
prioritized. In this work, we choose to minimize the travel
time and characterize the error (Fig. 4) afterwards in order
to design the spatial constellations accordingly. We propose
a two fold process to minimize T with maximum residual
error constraint (emaxres ):

1) Tune the PID controller to minimize tcr with over-
shoot error not exceeding emaxres .

2) Minimize tos by relaxing criterion to determine suc-
cess in reaching a waypoint.

10.4.1 Tuning Process Overview
We manually tuned our PID controller online since DJI low-
level Flight controller (FC) is closed sourced. As mentioned
in the previous section, the objective is two-fold, minimize T
while keeping eres under a certain threshold (emaxres ). First,
the PID controller was tuned to minimize tcr . Second, we
tuned the controller saturation limits to umin = 0.15 m/s
and umax = 5 m/s in order to achieve emaxres = ±0.20 m
with dcr = 0.15 m. The tuned proportional, integral and
derivative constants are kp = 0.6, kI = 0.05 and kd = 0.12
respectively.
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10.4.2 Criteria to Determine Success in Reaching a Way-
point
Typically, the following expression would be used in order
to decide whether a UAV has reached a destination location.

dut(t) <= dcr (34)

However, experimental exploration after parameter tuning
revealed that the overhead of tos over T was considerably
high. In order to mitigate this problem we proposed a
relaxation in the criteria used to determine if a UAV has
reached its destination, expressed as the following:

dsu(t) > dst + dcr (35)

The new destination point reaching criterion assumes that if
the UAV overshoots, it will have mostly been in the direction
defined by ~renust . Then, the proposed modification eliminates
the overhead introduced by tos in exchange for potentially
higher residual errors that can be compensated with the
proper design of the spatial constellations. Thus, if either
of the criteria defined by Eq. (34) or Eq. (35) is fulfilled,
the controller will consider that the UAV has reached the
destination point.

10.4.3 Implementation Overview
Here, we present final implementation details of the PID
controller. As mentioned in Sec. 10.3, the UAV takes inputs
from the DJI ROS SDK in FLU coordinate format. Accord-
ingly, the unbounded estimated velocity along a FLU axis
( ~ue

flu(t) · n̂) and yaw rate ( ~ωe(t)) PID updates are estimated
as expressed in Eq. (36) and Eq. (37) respectively.

~ue
flu(t) · n̂ =kp ~eut

flu(t) · n̂+ kd
d ~eut

flu(t) · n̂
dt

+

kI

∫
~eut
flu(t) · n̂ dt|n̂∈î,ĵ,k̂

(36)

~ωe(t) = kp ~eyaw(t) + kd
d ~eyaw(t)

dt
+ kI

∫
~eyaw(t) dt (37)

The process of bounding ~ue
flu(t) within saturation

limits(umax, umin) (Sec. 10.4.1) to compute the commanded
velocity ( ~uc

flu(t)) can be expressed as:

~uc
flu(t) · n̂ =

sign( ~ue
flu(t) · n̂) umin, if | ~ueflu(t) · n̂| ≤ umin

ûe
flu(t) · n̂ · umax, if | ~ueflu(t) · n̂, | ≥ umax

~ue
flu(t) · n̂, otherwise

where, n̂ ∈ î, ĵ, k̂
(38)

However, the above introduced formulation does not
actively tackle the PID integral windup problem [42], which
might cause velocity saturation resulting in excessive over-
shoot. A variant of the anti-windup strategy described in
[42] is implemented to constrain the cumulative error to
a maximum threshold, Ce

max, limiting the PID integral
component to attain a maximum of kI ·Cemax. This solution
with a lower Ce

max ensures the cumulative error to reach
a maximum threshold within a few control cycles, thereby
avoiding controller saturation. Lowering Ce

max increases

the sensibility of the controller to change in the direction of
the error, which is commonly observed during the overshoot
correction(settling) phase. The integral term of the PID
formulation (Eq. (36)) after introducing this anti-windup
strategy, ~uI can be described as the following:

~uI(t) · n̂ =

{
kI · sign(Ce(t)) · Cemax, if, |Ce(t)| ≥ Cemax

kI · Ce(t), otherwise
(39)

where,

Ce(t) =

∫ t

0
~eut
flu(t) · n̂dt|n̂∈î,ĵ,k̂ (40)

In our implementation, we set a threshold on the cumu-
lative error, Ce

max to ±5 m, such that the maximum value
of the integral component (=

∣∣0.25 m s−1
∣∣) is closer to the

controller saturation velocity lower bound.
Finally, notice that the system architecture and PID

controller described in this section applies to a multi-UAV
scenario as well, where each UAV would run its own PID
controller independently and all drones would be centrally
connected to the same ground control station.

10.5 Estimation of Travel Time for simulation
Following the nomenclature in Sec. 10.3, we define ~ua(t)
as the real velocity the UAV experiences under external
disturbances. In our PID implementation, the estimated
velocity ~ue

flu(t) · n̂ is calculated independently along each
FLU axis. In this work, in order to compute the estimated
travel time T in simulation, we use the PID controller
implementation in Sec. 10.4.3 while considering equivalent
kinematic constraints of the UAV. Here, we assumed that
the commanded velocity ( ~uc

flu(t) · n̂) and actual velocity
( ~ua(t + dt) · n̂) will be proportional at all times and they
will never have opposite directions. We represent such re-
lationship as ~ua · n̂ = λ · ~uc · n̂, where the scaling factor
λ is a positive constant that compensates ~uc · n̂ for the
combined effect of the external disturbances and the FC
response. Additionally, since the PID integral component
quickly saturates to Ce

max, the term ~uI · n̂ in (Eq. 39) will
be set to kI · sign(Ce(t)) · Cemax for the entire travel time.
Notice that this also takes into account the relaxation criteria
defined in Sec. 10.4.2.

The parameter λ is typically bounded considering im-
posed kinematic constraints of controller and realistic UAV
velocities. Additionally, λ varies in time based on tacc,
tconst vel and tdec. However, given the PID implementation
details and a short constellation point separation in our sce-
nario, we observe that: i) tdec � tacc and ii) tconst vel = 0.
Thus, in simulation, we assume a constant λ for the entire
travel time.

The travel time spent along a FLU axis is derived from
our PID implementation in Eq. 36 after considering the
above described assumptions. The bounded travel time (Tn)
along a FLU axis is estimated using the waypoint reaching
criterion in Sec. 10.4.2 ( ~rsu

flu(t) · n̂ = ~rst · n̂− dcr), and can
be expressed as:

Tn = −
1
λ + kd

kp
· ln (1− ~rst

flu · n̂− dcr
~rst
flu · n̂+ kI

kP
· Cmax

); n̂ ∈ î, ĵ, k̂

(41)
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Fig. 13: Spatial constellation

The total travel time T to reach ~renut (Eq. 33) is computed as
the maximum of travel times Tn along each FLU axis.

T = max
∀i∈x,y,z

Tn (42)

11 PERFORMANCE EVALUATION

11.1 Simulation results
In Fig. 14, we compare the average distance for the ex-
haustive search and the heuristically derived constellation
points, and we see a near-perfect agreement comparing both
approaches. Fig. 15 analyzes the impact on T of ∆θ and
∆ρ, as well as the constellation size. Whenever ∆θ or ∆ρ

increases, so does T . This is expected since the UAV takes
more time for traversing longer inter-symbol distances. The
travel time is computed considering a PID controller that
chooses the velocity of the UAV based on the distance to its
target. We set kp = 0.6, kd = 0.12 and ki = 0.05, which
represent for the proportional, derivative and integral PID
constants, respectively. All the simulations are conducted
in MATLAB.

11.2 Experimental results
We assume the problem involves selecting one of two
channels centered at 900MHz and 905MHz, and so, we set
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Fig. 14: Performance of heuristic with respect to exhaustive
exploration.
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Fig. 15: Travel time vs log2(N) for different ∆ρ and ∆θ

values. Both plots are for ρ = 5m and λ = 1 (Eq. 41). On the
left, ∆θ is fixed to 5o. On the right, ∆ρ is fixed to 0.8m.

N=2. For this experiment, we set ∆ρ and ∆θ such that
Pe ≈ 0. This is achieved by choosing ∆ρ/θ � σρ/θ . For
measurements with RTK (Sec. 4.2) we find σρ ≈ 0.05m

and σθ ≈ 0.9o. Thus, we pick the quotient ∆ρ/θ

σρ/θ
to be

≈ 13dB, which results in ∆ρ = 1m and ∆θ = 18o. The
exhaustive search constellation for these values results in
two symbols along the ρ axis. For ρ = 5m, these points are
at s1 = [0, 5] and s2 = [0, 6], where si = [θi, ρi] represent
the coordinates for symbol i. Then, we mount one Ettus
B210 on a DJI M600 that acts as a transmitter. Another B210
and a TI IWR1642 radar is connected to a BS running Linux,
which also executes the clustering algorithm from Sec. 4.3.
The UAV location is an input for switching the center fre-
quency of the B210 SDR. Finally, a third B210 on the ground
emulates a jammer by transmitting at high power. Fig. 16
shows how goodput evolves over the jamming attack, and
how position-based information relaying allows the link to
recover via channel switching. Prior to the jamming (1), the
average goodput is 100% with near-perfect data decoding.
However, when the jamming attack begins, the receiver is
not able to decode the received data (2). Then, the UAV
switches the transmission to a new channel and moves to
a new constellation point (ρ = 6 → ρ = 5) in order to
communicate it to the BS. This movement is sensed and
the data transmitted in the new jamming-free channel is
decoded at the BS.

Finally, in Fig. 17 we show the experimental and the-
oretical average travel time T . We see that our model is
more accurate for larger (≥ N ) constellation sizes. This is
because the theoretical model does not account for wind,
which makes the UAV take longer time to converge to its
next location. Larger constellation sizes are analyzed via
simulations in the previous subsection. (Fig. 15).

12 FEASIBILITY OF THE APPROACH

In this section, we discuss the feasibility of the approach
presented in this paper. While there are current solutions
that already solve the problem of channel selection under
high interference conditions i.e. Bluetooth. [43], our ap-
proach proposes a general solution that considers limita-
tions of UAV deployments and at the same time leverages
from their mobility. UAVs are generally power constrained
and tend to operate hundreds of meters away from their
targets. Thus, spectrum exploration, specially on a high
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Fig. 16: UAV and BS communicate on a certain channel (1)
which is jammed right after (2). Then, the UAV moves to a
new location within its constellation (from ρ = 6 to ρ = 5)
to inform the BS the communication will switch to a new
band. In (3), the transmission resumes in the new band.
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Fig. 17: Average travel time comparison.

number of available bands, would be a burden for such
deployments. Furthermore, in scenarios where UAVs work
cooperatively in a shared spectrum [44] and their wish
to establish interference-free links with a same BS, our
approach would be a feasible solution towards safe and
robust dynamic channel communication between the UAVs
and the ground-based station. Also, in the recent increase
of research interest in Millimeter-Wave (mmWave), multiple
UAV applications have been investigated and have already
shown successful results. However, due to the extremely
high attenuation in the mmWave band due to atmospheric
absorption, spectrum exploration would be prohibitive in
such scenarios as well. To sum up, our approach allows
the UAV to deterministically indicate on what frequency the
communication will happen, while the overhead introduced
due to the travel time between constellations points is not
negligible, such capability is of great advantage specially
when wide spectrum bands are available in different fre-
quency ranges.

13 CONCLUSION

In this work, we present an interdisciplinary paradigm of
position based modulation using UAVs which can convey
information by creating spatial codes. As a use case, we
show this method can be used for channel selection in jam-
ming situations. In addition, we show and analyze the fea-
sibility of the multi-UAV case, tackling the clustering, space
limitation and probability of error derivations challenges.
Next, we compare our method to FHSS, a widely used trans-
mission technique under broadband jamming attacks, and
identify the conditions under which of these two methods
might be preferred. Our work is driven by experimental
characterization of localization error caused by hovering
UAVs, and errors introduced by COTS mmWave sensor.
Finally, we experimentally demonstrate how our system can
be used to overcome jamming using a DJI M600, Ettus B210
SDRs and a TI IWR1642 mmWave sensor.
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