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Abstract—Collecting an over-the-air wireless communications
training dataset for deep learning-based communication tasks is
relatively simple. However, labeling the dataset requires expert
involvement and domain knowledge, may involve private intel-
lectual properties, and is often computationally and financially
expensive. Active learning is an emerging area of research in ma-
chine learning that aims to reduce the labeling overhead without
accuracy degradation. Active learning algorithms identify the
most critical and informative samples in an unlabeled dataset
and label only those samples, instead of the complete set. In this
paper, we introduce active learning for deep learning applications
in wireless communications, and present its different categories.
We present a case study of deep learning-based mmWave beam
selection, where labeling is performed by a compute-intensive al-
gorithm based on exhaustive search. We evaluate the performance
of different active learning algorithms on a publicly available
multi-modal dataset with different modalities including image
and LiDAR. Our results show that using an active learning
algorithm for class-imbalanced datasets can reduce labeling
overhead by up to 50% for this dataset while maintaining the
same accuracy as classical training.

Index Terms—Deep Learning, Wireless Communications, Ac-
tive Learning, mmWave Beam Selection

I. INTRODUCTION

Deep Learning has revolutionized the field of wireless com-
munications by offering automated solutions for many physical
layer (PHY) applications, ranging from signal detection and
classification [1], to security measures in data coding and
device authentication [2], as well as receiver chain design [3].
In such solutions, a learning algorithm learns the mapping
between inputs and outputs (labels) through getting trained
on an ideally diverse and comprehensive labeled dataset. The
best generalization ability on real-life test signals is achieved
if the training dataset also contains in-the-wild-collected and
real-life radio frequency (RF) signals.
Labeling an RF dataset: Collecting wild over-the-air RF
datasets can be performed by simply recording signals in bands
of interest from WiFi, cellular, or other wireless networks,
however, labeling such a dataset is no trivial task. Labeling an
RF dataset can be especially cumbersome since obtaining these
labels requires a high degree of professional knowledge. In the
RF domain, labels are obtained using either compute-intensive
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Fig. 1: Top: Classical learning where the complete dataset is
labeled and used for training. Bottom: Active learning where
a subset of the dataset is selected and labeled for training.

and time-consuming signal processing algorithms or hand-
engineered features by human experts. Overall, we describe
3 broad situations where labeling RF datasets is challenging:
Challenge1. Compute-intensive labeling: One of the main
motivations behind using deep learning instead of the tra-
ditional deterministic algorithms in many PHY applications
(e.g., RF fingerprinting [2] and modulation classification) is
to reduce decision time by substituting the compute-intensive
traditional signal processing algorithms with a lighter trained
algorithm, in the inference phase. However, the training pro-
cess still requires the compute-intensive traditional algorithm
to provide the labels. Authors in [4] show that (traditional)
cyclostationary signal processing (CSP) algorithms require
33.5M floating point operations (FLOPs) to acquire label for
one signal in an anomaly detection problem.
Challenge2. Labeling with human in the loop: Similar to
the image processing domain, where human operators label
images in the training dataset, many PHY signal process-
ing tasks require human involvement to acquire labels. One
such example is CSP, where highly discriminative features
are extracted from PHY signals using various periodically
time-variant probabilistic parameters. After feature extraction,
human involvement is necessary to set specific thresholds for
classifying extracted features in a modulation classification
problem or detecting the potential presence of a specific
waveform [4].
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Challenge3. Financially costly labeling with private intel-
lectual properties (IPs): Another challenge is labelling an
RF dataset using proprietary and private signal processing IPs
designed and owned by telecommunication companies. These
IPs are provided to customers for certain end-to-end functions,
therefore, their intermediate signals are only internally avail-
able and are not provided to the customers through user inter-
faces. As an example, consider an IP that provides the end-
to-end orthogonal frequency division multiplexing (OFDM)
receiver processing and data decoding. The input to the IP
is the received signal and the output is decoded bits after all
the steps of synchronization, channel estimation, equalization,
demapping, and decoding [3]. Since the intermediate outputs
such as the estimated channel are not exposed in the interface,
if a user wishes to train a channel estimator deep neural
network (DNN) using this IP, they have to pay extra for the
estimated channel labels. In this case, a method that helps to
find the most informative samples to be labeled can reduce
the financial labeling cost.

Active Learning to enable “Learning From the Best”: Ac-
tive learning can be used to address the three aforementioned
challenges where acquiring signal labels is expensive. In this
paper, we introduce active learning as a tool to train a DNN
with reduced number of labeled training samples. As shown in
Fig. 1, as opposed to classical training where all the samples in
the training dataset are labeled, in active learning the DNN has
access to an unlabeled dataset. The active learning algorithm
iteratively and adaptively selects the most informative and
critical samples from this unlabeled pool using probability
scores and queries an information source or oracle for labels
of only those samples. When the oracle provides the labels, a
labeled training set is updated iteratively with newly labeled
samples and the DNN is trained on the complete labeled
training set. The process continues until the desired labeling
budget is met. In this way, the learning algorithm learns data
distribution using only the most informative samples instead
of the whole pool, and hence, learns from the best.

In [5], active learning is applied to reduce the expert
labeling cost while training random forest models for internet
of things (IoT) intrusion detection. However, to the best of our
knowledge, deep active learning algorithms have not been used
in the wireless communications domain before. In this paper,
we address a much broader range of concerns around labeling
cost of RF datasets. Furthermore, we provide a detailed and
first-to-date guide in using different categories of deep active
learning algorithms for different PHY applications (Section II).
In Section III, we present a case study of active learning
for mmWave beam selection using a publicly available multi-
modal dataset [6] that is extremely class-imbalanced, similar
to many other in-the-wild-collected RF datasets. We deploy a
properly suited deep active learning algorithm for extremely
imbalanced datasets named as GALAXY [7] on different
modalities of the dataset. We show that GALAXY can reduce
the labeling need by up to 50% on this dataset, while main-
taining the same accuracy as classical training (Section IV).
We present future directions in Section V and conclude the
paper in Section VI.

II. CATEGORIZING ACTIVE LEARNING ALGORITHMS FOR
PHY APPLICATIONS

In this section, we categorize active learning algorithms
from two different perspectives: (A) How much of the dataset
is available, and (B) What is the deep learning-based PHY
problem type. A detailed categorization is described below and
a summary is shown in Fig. 2. As it can be seen in Fig. 2,
the A and B categories are independent and parallel and any
given PHY task can fall in one of the branches under A and
another branch under B, depending on the dataset availability
and the PHY problem type.

A. Based on Availability of RF Dataset

1) Pool-based Active Learning: Pool-based active learning
is probably the best performing active learning scenario, where
the highest performance can be achieved with fewest labeled
samples. This high performance is achieved at the expense of
a large pool of collected data being available. The pool-based
active learning flow is described in the following steps: (i) A
specific labeling budget is considered and a batch size, N , is
set by the user in the beginning of training. (ii) In the first
active learning iteration, N random samples are drawn from
the unlabeled pool and the oracle is queried for the labels
of that batch. (iii) The model is trained fully for multiple
epochs on the labeled batch (i.e., labeled training set). (iv)
In the beginning of next iteration, the so-far trained model
is tested on the whole pool and predictions are recorded. (v)
A specific active learning algorithm [8] becomes effective to
select another N unlabeled samples –based on the prediction
results– to be queried in the current iteration. (vi) The labels
of the new batch are provided by the oracle and the training
set is updated with the newly labeled batch. (vii) The model
is trained on the current labeled training set, and the steps are
repeated starting step (iv) until the labeling budget is met.

Pool-based active learning is suitable for offline training
tasks, which is ideal for PHY applications too, as it obviates
the requirement of specialized hardware for training on edge
devices. Offline learning is pragmatic for PHY applications
where the discriminating factors of the dataset remain con-
sistent over time, in different heat degrees, in different en-
vironments, and under different wireless channels. Examples
of such tasks could be signal detection [1], demapping [3],
decoding [3], etc. In such cases, if a pool of PHY signals is
collected, pool-based active learning can be deployed to train
an equally robust model with fewer labeled samples.

2) Stream-based Selective Sampling: In this scenario, the
learner receives training samples one by one and decides
whether to query or discard them. The key assumption to use
this scenario is that obtaining an unlabeled sample is free or
inexpensive, which is the case for most PHY applications with
either synthetic data generation or over-the-air data collection.
As this scenario does not incorporate the assumption of
accessing a full dataset, it can be deployed to deep learning-
based PHY applications that require online training. Such
cases usually encompass applications where a significantly
impactful factor changes between the training and deployment
phases. In this case, a deep learning algorithm needs to go



ACCEPTED IN IEEE WIRELESS COMMUNICATIONS MAGAZINE, JANUARY 2024 3

A. From availability of
RF dataset perspective

Membership Query
Synthesis: 
For learning small
and sparse RF
datasets.

B. From RF problem
type perspective

Multi-class Classification:
RF fingerprinting [2],
Modulation classification,
mmWave beam sector
selection [6]

Stream-based Selective
Sampling: For online
training in RF tasks using
streaming  training
samples. 

Pool-based Active
Learning: 
For offline training, when
a large pool of unlabeled
RF dataset is available.

Multi-label Classification: 
Demapping [3]
DeepRx [11]
Signal detection and
localization [1]

Regression:
Channel
estimation [3], 
CFO estimation
[14]

Active Learning 

Fig. 2: Categorization of active learning algorithms from two different and parallel perspectives of: A. Availability of RF
dataset, and B. PHY problem type. In this paper, we study a PHY use case for active learning that falls within the categories
marked with red boxes.

through a phase of online training as the environment changes.
Among the very environment-dependent PHY applications that
can benefit from stream-based selective sampling are channel
estimation [3], and beam selection [6] in new environments. In
such cases, stream-based selective sampling could be used to
skip labeling some of the uninformative samples, and hence
reduce queries on the expensive traditional algorithms. This
category of active learning algorithms also obviates the need
for a large data storage to contain a large pool of unlabeled
data. The decision of whether to query or discard a new
sample can be taken based on an informativeness measure or
by defining an explicit region of uncertainty.

3) Membership Query Synthesis: In this scenario, the
learner creates new training samples in the input space. These
new samples could be generated by creating random inputs in
the input space or by augmenting the existing training samples.
After sample generation, the learner queries the oracle to
provide the label for the newly generated sample. Membership
query synthesis is specially helpful if the training dataset is
small and sparse, however, labeling some of the generated
samples could be awkward for the oracle. As an example,
consider deploying membership query synthesis to train a
modulation classifier DNN on a small and sparse training set.
In this case, the learner generates new samples in the input
space and queries a classical signal processing algorithm (i.e.,
an oracle) for the label (a.k.a., modulation class). However,
since the sample is synthetically generated and is not actually
modulated by a certain scheme, it might be labeled as noise
by the oracle.

B. Based on PHY Problem Type

1) Multi-class Classification Problems: Multi-class clas-
sification problems are tasks where each input is predicted
to be a member of one specific class. Examples of such
PHY applications are device authentication (a.k.a., RF finger-
printing) [2], modulation classification, waveform (protocol)
classification, and mmWave beam selection [6] that is the
case study in this paper (see Section III). In machine learning
literature, authors in [9] utilize a hybrid of uncertainty and
diversity-based strategies for image, tabular, and language
class-balanced datasets, which generally performs well against
other existing algorithms. Authors in [10] study active learning

for large models and datasets through extensive experiments,
and demonstrate as the model and dataset sizes increase, label-
efficiency gain also increases and the benefits from active
learning are highlighted. Additionally, authors in [7] study
the extreme class-imbalanced settings and significantly reduce
the labeling cost through balancing the collected labels, while
choosing the most uncertain samples in benchmark datasets
such as CIFAR.

2) Multi-label Classification Problems: Multi-label classi-
fication problems are tasks where each input is a member of
multiple classes instead of just one. A demapper DNN that
converts symbols to bits is considered a multi-label classifier
as several output bits can be 1 for each input symbol [3]. The
same output type is designed in [11], which proposes a DNN-
based 5G receiver. Multi-label classification is previously used
also for detecting multiple waveforms in a spectrogram [1]
through YOLOv3 framework. In machine learning, there are
two types of multi-label queries: sample-based and sample-
label-based. Sample-based annotation provides all associated
labels of a sample at a time, whereas sample-label-based anno-
tation only gives the binary association between a sample and
a particular label. Authors in [12] study the class-imbalanced
settings with sample-based annotation by balancing number
of labels in each class. In addition, authors in [13] develop a
strategy for sample-label-based annotation.

3) Regression Problems: Regression PHY problems are
applications where a single value or a vector of values are
predicted for each input signal. Examples of such problems
are carrier frequency offset (CFO) estimation [14] and channel
estimation [3], respectively. In machine learning literature,
authors in [15] propose an uncertainty-based strategy by
querying samples with the highest variance of inference out-
puts when applying Monte Carlo dropout to a DNN. In order to
take advantage of both uncertainty-based and diversity-based
concepts, [9] proposes an optimal design strategy by utilizing
Fisher information.

More details about active learning algorithms can be found
in [8] for interested readers. In the rest of this paper, we focus
on a pool-based multi-class classification example use case
that is shown with red boxes in Fig. 2.
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III. ACTIVE LEARNING FOR MMWAVE BEAM SELECTION

In this section, we introduce mmWave beam selection as an
example application to show the benefit of active learning for a
deep-learning task in the wireless communications domain. We
describe the multi-modal mmWave dataset, and describe the
active learning algorithm used to learn this dataset in details.

A. Millimeter-Wave Beam Selection

Millimeter-Wave beam selection is a PHY application,
where the input is the set of collected beams and the output is
the “best” beam index. Traditionally the best beam is selected
through a compute-intensive and time-consuming algorithm
based on an exhaustive search on all the possible beams.
Authors in [6] propose using DNNs on multi-modal data
for limiting the exhaustive search to a smaller subset of
top beams. Their proposed DNN-based scheme reduces the
beam selection time by 57% for mobility scenarios in V2X
communication compared to the classical exhaustive search.
However, training the DNN prior to the deployment phase
requires labels that are achieved through the exhaustive search.
Therefore, labeling a mmWave dataset for a beam selection
task could benefit from active learning to reduce the need for
labeled training samples and overall reduce labeling overhead.
Active learning provides this reduction by selecting the most
informative unlabeled samples and querying the oracle (i.e.,
exhaustive beam selection algorithm) only for the labels of
those samples. To evaluate active learning, we use the FLASH
multi-modal dataset [6] and formulate beam selection as a
multi-class classification pool-based active learning problem.

B. Dataset Description

FLASH dataset [6] consists of different modalities including
camera images and LiDAR collected from an automated car
driving in a street, while communicating with a mmWave
radio posing as a base station. The mmWave signals are also
collected to later be processed and provide the beam indices
(i.e., labels) for each location. There are 4 different categories
in the dataset consisting of 21 LOS and NLOS scenarios,
each consisting of 10 episodes which are 10 different runs
of the car in the same scenario. In each location camera
image and LiDAR signals are recorded. In the TP-Link Talon
AD7200 triband router that is used as the mmWave radio,
34 different beam indices are defined. Therefore, the beam
selection problem is formulated as a multi-class classification
problem with 34 classes whose indices range from 0 to 33.
We count population per class in all the categories, scenarios,
and episodes across all the 30711 datapoints in the whole
dataset, and demonstrate population per class in Fig. 3. With
the smallest class (index 8) with 20 members and the largest
(index 18) with 6882 members, we observe an extreme class
imbalance in the dataset.

For labeling class-imbalanced datasets such as FLASH,
special considerations need to be taken into account so that
the samples from larger classes are not favored to be selected
over the samples from smaller classes. To incorporate these
considerations, authors in [7] proposes GALAXY.
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Fig. 3: Population per class across 30711 samples in the
dataset shows extreme class-imbalance in the dataset. The
smallest class is class 8 with 20 and the largest class is class
18 with 6882 members.

C. GALAXY Algorithm for Learning Class-imbalanced
Datasets

GALAXY [7] is proposed specifically for pool-based active
learning in multi-class classification problems on extremely
class-imbalanced datasets. Confidence sampling, which is a
popular uncertainty-based sampling algorithm, selects the sam-
ples that show relatively low confidence compared to the rest
of samples in the pool, without considering their predicted
class. Therefore, in imbalanced datasets confidence sampling
is most likely to select samples in larger classes to be labeled.
On the other hand, GALAXY finds the optimal decision
boundaries through a bisection procedure and selects samples
that are both uncertain and class-diverse.

Similar to all pool-based active learning algorithms,
GALAXY comes into action in the beginning of each iteration,
after the trained model is tested on the complete pool of sam-
ples (see Section II). GALAXY uses a two-phase procedure.
During the first phase, GALAXY calculates a one-versus-
all uncertainty score for each sample using the predicted
probability vector. For each example class X, GALAXY sorts
the pool samples (including unlabeled and already labeled
samples) based on their uncertainty scores and forms a linear
graph for each class X with samples as graph nodes, while it
considers all other classes as class Y. The samples on the two
ends of the graph have the lowest uncertainty scores in classes
X and Y. The samples with higher uncertainty are located in
between the two end nodes. The goal is to label all pairs
of nodes that form an edge and are classified as different
classes of X and Y. Such edges are called cuts. We call a
segment of consecutive nodes on the graph bisectable, if it
has labeled samples of classes X and Y on its two ends, and
it contains no already-labeled cuts. We note that a bisectable
segment always has a cut in it. When we locate a bisectable
segment, a bisection procedure is performed, where GALAXY
iteratively queries and labels samples one at a time. If there
are multiple bisectable segments in each graph, GALAXY
prioritizes the shortest segment across all graphs to bisect.
The second phase starts when there is no bisectable segments
left in any graphs. In this phase, GALAXY queries and labels
samples around all identified cuts thus far. During this process,
if additional bisectable segments appear, GALAXY reverts to
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Fig. 4: GALAXY algorithm where (1) Uncertainty scores
are calculated and the graphs are composed with sorted
uncertainty scores for each class X versus all other classes
as class Y, (2) Bisectable segments are identified, and (3)
Bisectable segments are prioritized and the samples around
all identified cuts in the bisectable segments are queried based
on the priority.

the first phase. A simplified overview of GALAXY is shown
in Fig. 4.

In each iteration, GALAXY search stops as soon as a batch
of N samples is labeled. Next, the DNN is retrained on all
the labeled samples and the linear graphs are updated for each
class. More details about GALAXY and evaluations on non-
RF datasets are described in [7].

IV. EVALUATIONS

In this section, we show test accuracy results on two
modalities of FLASH dataset for mmWave beam selection
with and without active learning.

A. Evaluation Setup

As the lowest class population is 20 (see Fig. 3), we shuffle
the dataset and pick 10 samples from each class to compose the
test set, and keep the rest (30371 samples) for training. In this
way, we maintain a class-balanced test set where all classes
contribute equally to test accuracy, and an imbalanced training
set, which is the real-world case for any in-the-wild RF
training dataset collection. We use GALAXY [7] as the state-
of-the-art active learning algorithm for imbalanced datasets.
To have a point-to-point comparison with classical learning in
each and every iteration, we use random sampling to randomly
select samples to be labeled [7]. We also compare GALAXY
with confidence sampling that is a popular uncertainty-based
active learning algorithm [8].

For each modality, we use different DNNs. For image
modality we resize the inputs to dimensions of (3, 90, 160)
and use standard ResNet18 with 11.1M parameters from
torchvision package. For LiDAR modality with inputs

of size (20, 20, 20), we use a custom convolutional DNN
with residual blocks totally with 1.1M parameters, that is
used in [6]. Following the pool-based active learning steps
described in Section II, we set the active learning batch size
to 204 which means in each iteration 204 samples are selected
and queried for labels and are added to the current labeled
training set. As explained before, the strategy of selecting
the new batch from the unlabeled pool of samples depends
on the active learning algorithm. We train each DNN with
its corresponding training set modality of that iteration for
several epochs, until it is fully trained. At the end of each
iteration we measure test accuracy and per-class minimum
queries, which is a good metric for class-diversity. We repeat
the end-to-end training/test experiments 5 times for each active
learning algorithm in each modality, and between the 5 runs,
we shuffle and re-partition our training and test sets. For each
modality and each algorithm, we report the average of test
accuracies at each iteration over the 5 runs. We also report
standard errors (calculated as standard deviation of accuracies
divided by square root of number of runs) of test accuracies
at each iteration averaged over all iterations.

B. Numerical Results
1) Test Accuracy: For each modality and each algorithm,

we smoothen the curves of average test accuracies using an
averaging window of size 10, for less spiky illustration. In
Fig. 5, we show average test accuracy versus the number of
labeled samples in each iteration. We observe that for both
modalities GALAXY algorithm plateaus in earlier iterations
with fewer labeled samples. For image modality, we report
average standard errors of 1.0%, 1.2%, and 1.0% for random
sampling, confidence sampling, and GALAXY, respectively.
This standard error for each algorithm is caused by different
training and test set partition selections, as well as different
seeds for the initial random batch selection among all runs.

In image modality, we observe that random sampling,
confidence sampling, and GALAXY achieve an example ac-
curacy of 60% with 19176, 17136, and 9588 labeled samples,
respectively. This means that GALAXY is able to achieve the
same accuracy of 60% with 50% and 40% fewer labeled sam-
ples compared to random sampling and confidence sampling,
respectively. In the same modality, GALAXY can achieve 63%
accuracy with 42% and 41% fewer labeled samples compared
to random sampling and confidence sampling, respectively.

For LiDAR modality, we plot the average accuracies and
report average standard errors of 1.6%, 1.8%, and 1.7%
for random sampling, confidence sampling, and GALAXY,
respectively. We observe that GALAXY is able to achieve
an example accuracy of 71% with 11% and 10% fewer
labeled samples compared to random sampling and confidence
sampling, respectively.

2) per-Class Minimum Queries: We showed that GALAXY
excels the performance of random sampling and confidence
sampling by achieving the same accuracy with fewer number
of labeled training samples (a.k.a queries). Here we show that
GALAXY achieves this by considering the predicted class
for selecting the samples to be queried, and selects a class-
diverse batch. Fig. 6 shows average minimum queries per
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Fig. 5: Average test set accuracy measured in each active learning iteration for two modalities of image and LiDAR, each with
three different algorithms of random sampling, confidence sampling, and GALAXY.

Fig. 6: Average per-class minimum queries on the training set in each active learning iteration for two modalities of image
and LiDAR, each with three different algorithms of random sampling, confidence sampling, and GALAXY.

class for image and LiDAR, with three different algorithms
of random sampling, confidence sampling, and GALAXY. We
recall that the smallest class has 20 members (see Fig. 3)
out of which 10 are partitioned as the test set. Therefore, the
smallest class in the training set has 10 members. In Fig. 6, we
observe that GALAXY reaches per-class minimum queries of
10 much earlier than random and confidence sampling, which
shows that the smallest class is completely queried in earlier
iterations. We observe that in the image modality, GALAXY
reaches per-class minimum queries of 10 at 12648 labeled
samples, while random and confidence sampling get to the
point of completely sampling the smallest class when 29376
and 29784 samples are queried, respectively. This shows that
GALAXY fully queries the smallest class in the training set
in 56% and 57% fewer queries compared to those of random
and confidence sampling, respectively. Similarly, in LiDAR
modality, GALAXY fully queries the smallest class in 66%
and 67% fewer queries compared to random sampling and
confidence sampling, respectively.

V. FUTURE DIRECTIONS

• Digital Twins of Wireless Networks: A digital twin is a
virtual model of a real world environment that is designed to
study the properties of the real world without risking damage
to life or property in it. In wireless communications, digital
twins are used for modeling RF propagation patterns, de-
signing network architectures, and optimizing PHY protocols.
With a high-fidelity digital twin, the emulation outputs are
analogous to real-world observations. As a result, recent work
suggest using digital twins instead of running measurement
campaigns and generating labels for machine learning tasks.
While using digital twins significantly reduces human effort
and equipment cost, running a high fidelity digital twin for
labeling a dataset often requires intensive computation and is
time consuming. On the other hand, active learning enables

training DNNs with a reduced number of labeled training
samples. As a result, by pairing the digital twins with active
learning, a framework can be self-sufficient by optimally
generating the labels in the digital twin.
• Active Learning in Quantum Communication: Quantum
communication is used for transmitting highly sensitive data
due to the entanglement process, where eavesdropping leaves
a trace, as measuring the state of one qubit affects the state of
another qubit that is entangled with it. Hence, while designing
a deep-learning-based receiver for quantum communications,
labeling qubits that involves measuring their states is expensive
and consequential. In this case, active learning can help train
an equally robust DNN with fewer labeled samples (qubits).
• Active Learning for Preserving Privacy in Open Radio
Access Network (O-RAN): Active learning can be specially
helpful when a training set is collected using an O-RAN
system, as the data and labels have high privacy in O-RAN
systems. Active learning can help reduce the number of
required labeled samples, and hence preserve user’s privacy as
much as possible. In this case, the network operators can start
with a few iterations of random sampling until there is one
labeled sample from each class. Then, a more sophisticated
sampling algorithm could be used for more guided sampling
and selecting the most informative samples.
• Optimizing for Training Computational Cost Besides
Labeling Cost: As established in this paper, active learning
aims to reduce the labeling cost through adaptively and
iteratively selecting the most informative unlabeled samples
to be queried for labels. Apart from this, continual and life-
long learning algorithms that are originally designed to address
the catastrophic forgetting problem, can also be used for
optimizing training computational cost. This is achieved by
preserving the previous knowledge and fine-tuning the DNN
using the new data, instead of re-training it again on old and
new data from scratch. The two categories of methods are
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mutually exclusive and can be jointly applied to deep learning
based PHY applications to improve both labeling and training
computational costs.

VI. CONCLUSION

In this paper, we introduced active learning for deep learn-
ing applications in wireless communications. We described
different categories of active learning algorithms and mapped
them to different PHY deep learning applications. Next, we
discussed a case study of mmWave beam selection as an
example of active learning for extremely class-imbalanced
datasets, that is the case for many RF datasets that are collected
in the wild. We investigated how active learning reduces
labeling overhead for two different modalities in the dataset,
and showed that using active learning we can achieve the same
accuracy as the classical training with up to 50% fewer labeled
samples. We further showed future directions for using active
learning in wireless communications.
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