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Abstract—The use of non-RF data can potentially speed
up millimeter wave-band sector-steering in vehicular mobility
scenarios by gaining contextual knowledge of the environment.
While several works have demonstrated the benefits of this
approach, especially applying machine learning models on in-
puts from LiDAR and image sensors, adapting such models in
‘unseen’ environments remains an open problem. State-of-the-
art techniques generally use a single, pre-trained model for all
different scenarios, which assumes that the network has ‘seen’
representative examples of all future scenarios. In this paper, we
propose the TUNE framework, which solves this problem by:
(a) transfer learning (TL) for better performance with similar
convergence times in comparison to non-TL-generated model
testing, (b) utilizing statistical properties to select the best-suited
starting ‘seen’ scenario (and by extension the model trained for
it), and (c) a refinement of the transfer learning framework by
dynamically selecting the most pertinent layers for retaining, thus
reducing the overhead compared to fully retraining a model. We
validate TUNE on publicly available synthetic and real-world
datasets for mmWave beam selection for V2X communication,
revealing that TUNE generally outperforms non-TL methods in
a variety of tasks where a different number of beams is available
between the training and testing environments.

Index Terms—Transfer Learning, Multimodal Data, mmWave,
Beam Selection

I. INTRODUCTION

There is a tremendous spectrum crunch today in the sub-
6 GHz frequency range. To address this shortage, operators
are exploring deployment in millimeter wave (mmWave)-band
frequencies such as the 28 GHz band [1] and the 57-71 GHz,
which are less occupied and permit wide-band channel use
resulting in data rates of over 10 Gbps [2]. The emerging
vehicle-to-everything (V2X) communication paradigm relies
on such links, in which vehicles may communicate a large
amount of information to other vehicles and participating in-
frastructures for purposes such as vehicular control, road safety
and efficient route planning. Most vehicles today already have
a variety of non-radio frequency (RF)-based sensors installed.
We believe that not only can mmWave links help in relaying
all this sensor data for off-site analysis, but these sensors
themselves can play a symbiotic role by aiding the formation
of directional links.
Multimodal sensing data for mmWave beam selection:
Combining different types of multimodal data and using ma-
chine learning (ML) on these datasets may boost system-wide
performance in decision-making tasks. In some scenarios, non-
RF data, such as data in the form of camera images, GPS
coordinates, light detection and ranging (LiDAR) pointclouds,
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Fig. 1: A schematic of the TUNE framework.

radar signals, infrared signals, and acoustic signals, to name a
few, have been used to provide additional context in decision
making not otherwise observable by the use of RF data alone.
Of particular relevance to this paper is the work on using
non-RF data for mitigating the characteristic signal attenuation
that comes with transmission at mmWave frequencies [3], [4],
[5]. These multimodal datasets have been used to address
channel estimation, interference detection, and beam selection
in MIMO systems.
Challenges of mmWave beam selection in V2X communi-
cation: V2X communication is often dynamic, particularly in
urban environments where the surroundings rapidly change.
Obstacles such as buildings, pedestrians, flora, other vehicles,
and even the weather all influence the connectivity between a
base station (BS), or transmitter (Tx), and a mobile receiver
(Rx) at mmWave frequencies. In order for an end-to-end V2X
system to function, the system must be able to rapidly adapt
from line-of-sight (LOS) to non-LOS (NLOS) connections
between the BS and the Rx, and also be resilient to numerous
types and numbers of obstacles. This is complicated by the
fact that some beams are occluded by the obstacles in a
NLOS scenario, and both the optimal beam from a previous
environment and the same number of available beams may not
be present in a new environment.
Transferring previously-learned knowledge: Recently, ML
has been gateway tool for overcoming many challenges in the
wireless communication domain. Exploitation of multimodal
sensing data to reduce aspects of mmWave communication has
been widely researched [6], [7], [8], [9]. However, overcoming
the challenge of adaptive learning in V2X communication
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is yet an under-addressed problem in this domain. In that
regard, transfer learning (TL) can be applied to leverage the
gained knowledge from one scenario, typically known as the
source domain, to a different but related scenario, known as
the target domain, for faster or more efficient learning while
accommodating rapid changes in the propagation environment,
such as changing connections in a V2X environment.
Problem definition: In this paper, we assume that an au-
tonomous vehicle equipped with GPS, camera and LiDAR
sensors is seeking to communicate with a roadside mmWave
BS. The GPS, camera and LiDAR sensors capture different
aspects of the environment in a specific scenario and feed this
information to a trained model to predict the optimum beam
to establish a directional link with the BS. For a scenario in
which the vehicle does not have a trained model, the vehicle
needs to quickly learn from previously observed knowledge.
We call the previously observed scenarios seen scenarios, and
new scenarios unseen scenarios. To that end, there are a few
significant questions, related to unseen scenarios: First, if the
vehicle arrives in an unseen environment where the BS has
a different number of beams than previously observed, how
quickly can the vehicle transfer the knowledge from seen
scenarios to infer the best possible beam? Second, if the
vehicle has trained models from multiple seen scenarios, which
model do we use as the starting point for knowledge transfer?
Finally, how does the vehicle determine which layers to freeze
or keep the same during TL between models while maintaining
inference performance?
Contributions of this paper: We propose the TUNE frame-
work that has the following main contributions:

• We propose a TL-based approach for adapting the com-
mon situation in which a BS in a new scenario has a
different number of beams than those from previously
seen scenarios. Moreover, TUNE can adapt to the sce-
narios recorded by these categories and can adapt to the
new number of beams that are available.

• We propose the use of a statistical dependency metric
called the Hilbert-Schmidt Independence Criteria (HSIC)
to determine the best initialization point and learning
path for efficient performance when using the previously
collected data from multiple seen scenarios.

• We describe the several TL strategies that we use and list
the benefits of using each strategy. We orchestrate a TL
strategy that freezes each layer in the ML architecture
dynamically on a case-by-case basis over the dataset to
decrease the training time.

• To validate TUNE, we use an existing real-world multi-
modal dataset for beam selection in vehicular scenarios,
FLASH [6], wherein the multiple categories of the dataset
each have a different number of beams available for
beam selection. We further show the effectiveness of
TL by training our framework on a completely synthetic
multimodal dataset used in mmWave beam selection
(Raymobtime [10]) and testing the trained framework on
the real-world dataset (FLASH).

II. RELATED WORKS

A. Reducing mmWave Beam Selection Overhead with Non-
RF Data using ML

There are numerous works proposed for optimizing
mmWave-band communication using ML-aided approaches
by leveraging non-RF data. In [11], Mashhadi et al. use
a federated LiDAR-aided approach to reduce beam selec-
tion overhead among locally-connected vehicles. Meanwhile,
Zecchin et al. use the added information of the receiver (Rx)
position from LiDAR data in a convolutional neural network-
based framework for more efficient beam selection [12]. Xu et
al. instead use image-based three-dimensional reconstructions
of the environment to increase beam selection accuracy [13].
Although these papers demonstrate promising results, they (a)
are confined to either only one or two non-RF sensor modal-
ities, (b) do not use the data collected or models generated
from previously seen scenarios to guide beam selection, and
(c) have only been tested on simulation datasets, namely, the
benchmark vehicle-to-infrastructure (V2I) simulation dataset
Raymobtime [10]. In this paper, we use both real-world and
simulation data in multiple TL schemes and data from three
modalities collecting information from a number of different
environments.

B. Transfer Learning

TL itself is also an increasingly popular technique used to
improve ML performance in several RF-based applications.
In [14], Rezaie et al. leverages prior knowledge and model
layer freezing from a source environment and antenna con-
figuration to aid in beam selection using instanced simulated
indoor environments. Conversely, Askarizadeh et al. approach
wireless channel selection with TL in [15] by attributing
computation and communication costs and rewards to each
TL action in an economic notion to optimize their learning
framework. Naturally, these sources may benefit from some of
the aspects presented in this framework, such as multimodal
data for increased TL efficiency, and none of these strategies
consider (a) changes to the total number of supported beams
at the base station (BS) as the environment, (b) utilizing
the contextual relevance from the most similar previously-
observed scenario from a multitude of options for efficient TL,
or (c) validating techniques on both simulated and real-world
datasets.

III. TUNE SYSTEM ARCHITECTURE

A. Problem Statement

Consider a Tx and Rx pair equipped with phased an-
tenna arrays with a predefined codebook defined by CTx =
{t1, . . . , tUi

}, CRx = {r1, . . . , rVi
} consisting of Ui and Vi

elements for ith scenario, respectively. Note that Tx and Rx
are allowed to have different number of beams in different
scenarios. In this case, A total of Ui + Vi probe frames must
be transmitted to complete the sector level sweep and the
beam that returns the maximum received signal strength is
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then selected as the optimum beam. For example, the optimal
beam at Tx is derived by:

t∗i = argmax
1≤ui≤Ui

ytui
(1)

with ytui
being the observed received signal strength at the

Rx side when the transmitter is configured at beam tui
for the

ith scenario.
While effective, this method of exhaustive search involving

Ui + Vi probe frames is slow for a V2X network, particularly
when considering a large variation in possible beams and
transmission time [16] across different environments.

B. Proposed Solution

TUNE solves the above problem by proposing a learning
paradigm on how to intelligently and dynamically transfer the
knowledge from all previously ‘seen’ scenarios to a newly
‘unseen’ scenario.

• TL to unseen scenarios: First, we show that by using
a conventional TL approach, TUNE can adapt to the
‘unseen’ scenario that may contain both a different envi-
ronment and a new BS setting (discussed in Sec. IV-B).

• HSIC-based model selection for TL: In the case that
TUNE has the option to transfer the knowledge from mul-
tiple ‘seen’ scenarios, TUNE chooses the scenario with
best HSIC dependencies for the most efficient knowledge
transference (see Sec. IV-C).

• Determination of optimal TL strategy: After TUNE
chooses the ‘seen’ scenario from which to transfer knowl-
edge from, TUNE leverages a thresholding mechanism
to choose the most pertinent layers for dynamic TL in a
case-by-case basis, as described in Sec. IV-D.

IV. TUNE FRAMEWORK DESIGN

The TUNE framework uses the models presented in [6] as
a starting point, with modifications for TL as described in this
section and Sec. VI.

A. Notations

We consider each scenario Ei to have multimodal sensing
data from location coordinates (GPS), images, and LiDAR
sensors. We denote the data matrices generated from these
GPS, images, and LiDAR sensors as XEi

C , XEi
I , and XEi

L with a
label matrix Y Ei for all three modalities. Here, considering the
dimensionality of each modality with GPS co-ordinates having
latitude and longitude, XEi

C ∈ RNt×2, XEi
I ∈ RNt×dI0×dI1 , and

XEi
L ∈ RNt×dL0×dL1×dL2 respectively, where Nt is the number

of training samples. We consider BSs in different scenarios
that can have variable numbers of available beams, denoting
SEi beams for scenario Ei. The label matrix is denoted as
Y Ei ∈ {0, 1}Nt×SEi to represent the one-hot encoding of SEi

beams of scenario Ei, where the optimum beam is set to 1,
and rest are set to 0 as per Eq. (1).

Pre-trained
Model

Create a base
model Freeze layers Train the new

layers Fine-tune

Train on
synth. dataset

Replace the
last layer

Decide more
relevant layers

Measure
perforamnce

Optimize the
prediction

Fig. 2: A typical pipeline for transfer learning.

We define the penultimate, or second-to-last, layer fusion
network which uses the XEi

C , XEi
I , and XEi

L data matrices as:

zEiFN = PEi

θ
Ei
FN

(XEi
C , XEi

I , XEi
L )

PEi

θ
Ei
FN

: R2+(dL0+dI0)+(dI1×dL1×dL2) 7→ Rd
Ei
FN

where PEi

θ
Ei
FN

maps the input vector to a vector with dimension

dEiFN. The ultimate layer of the fusion network is presented as:

sEiFN = σ(UEi

θ
Ei
FN

(zEiFN)) UEi

θ
Ei
FN

: Rd
Ei
FN 7→ R|Y Ei |

where sEiFN is the prediction score of the network and UEi
θFN

maps
the vector zEiFN to the one-hot encoded output. The mapping
σ : R|Y Ei | 7→ (0, 1)|Y

Ei | signifies a Softmax activation.

B. TL for Unseen Scenarios

The generic problem of TL can be formulated as a function
which maps the neural network parameters from seen scenario
Ei to unseen scenario Eu. We represent the generic transfer
learning problem as θEuFN = T (θEiFN), where T (.) is the strategy
of transferring the knowledge which will be realized.

In TUNE, we generate the prediction scores sEuFN of jth

scenario from the penultimate vector zEiFN of ith scenario. In
that case, the prediction scores for Eu scenario are formulated
as:

zEuFN = PEi

θ
Ei
FN

(XEu
C , XEu

I , XEu
L )

sEuFN = σ(UEu
θEuFN

(zEuFN ))

PEi

θ
Ei
FN

: R2+(dL0+dI0)×(dI1×dL1×dL2) 7→ Rd
Ei
FN

UEu

θ
Ei
FN

: Rd
Ei
FN 7→ R|Y Eu |

In other words, we use the same function PEi

θ
Ei
FN

for generating

vector zEiFN of scenario Ei and pass to the new ultimate layer
UEu

θ
Ei
FN

which maps to a different one-hot encoded label matrix

Y Eu . In this case, the T (.) is realized by the newly added
ultimate layer UEu

θ
Ei
FN

for unseen scenario Eu. Following the
proposed concept, a typical TL pipeline is shown in Fig. 2,
where we obtain the vector zEiFN after the ‘freeze layer’ block.
The UEu

θ
Ei
FN

represents the ‘train the new layers’ block.

C. Hilbert-Schmidt Independence Criterion-based Model Se-
lection for TL

We assume that when TUNE encounters an unseen scenario
Eu, it has previously observed N number of seen scenarios Ei
with 1 ≤ i ≤ N , and models PEi

θ
Ei
FN

, which generate vectors

zEiFN. To determine which model to select for the TL approach
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Fig. 3: Calculation of the threshold used to decide which layers to
freeze or retrain in an example network. We freeze all layers l such
that the normalized sum of weights from that layer W l is greater
than or equal to the calculated freezing threshold Θ.

discussed in Sec. IV-B, we use HSIC, a statistical dependency
metric used to measure non-linear dependency between two
random variables, first introduced by Gretton et al. [17], to
measure the relevance of the generated features zEuFN for Eu
with zEiFN for Ei.

In TUNE, we calculate HSIC with an empirical approxima-
tion ĤSIC ∼ HSIC between zEiFN and zEuFN by:

ĤSIC(zEiFN, z
Eu
FN ) = (n− 1)−2tr(K

z
Ei
FN
HKzEuFN

H)

where K
z
Ei
FN

and KzEuFN
are kernel matrices derived from zEiFN

and zEuFN , and H = I− 1
n11

T [18]. The selected seen scenario
Esc is formulated as:

Esc = argmax
i

∀ ĤSIC(zEiFN, z
Eu
FN ), 1 ≤ i ≤ N .

D. Determination of Optimal TL Strategy

Once we have selected the most relevant scenario Ssc to
start TL from, we move forward to ranking each layer of
the selected model based on the combined weights of all the
neurons of that layer. As shown in Fig. 3, we consider the
neural network model of selected scenario Ssc has LEsc layers.
Those layers have {l1, l2, . . . , lLEsc

} neurons, respectively. We
represent the layer-wise weights of the selected neural network
as: {{w1

1, w
1
2, · · · , w1

l1
}; {w2

1, w
2
2, · · · , w2

l2
}; · · · ;

{wLEsc

1 , w
LEsc

2 , · · · , wLEsc

lLEsc

}}. In order to dynamically select
a different number of layers for freezing, we compute a
normalized sum of weights {

∑l1
i=1

w1
i

l1
= W 1,

∑l2
i=1

w2
i

l2
=

W 2, · · · ,
∑lLEsc

i=1
wEsc

i

lLEsc

= WLEsc} as a normalized sum of
weights from all the layers and use them to calculate a freezing
threshold Θ as: Θ =

∑LEsc

l=1
W l

LEsc
.

The higher the normalized weights are for a layer from
the seen model, the more pertinent that layer would be in
the unseen model [19]. Thus, we rank the layers based on
increasing order of normalized sum of weights. We generate
a subset of layers Lsc where we freeze the layers whose
normalized sum of weights is higher than the calculated
threshold:

Lsc = {l |W l ≥ Θ, 1 ≤ l ≤ LEsc}

In this way, the selected subset of layers to freeze Lsc are
chosen dynamically, based on the specific selected scenario
Ssc.

V. USED DATASETS

A. Real-world Dataset: FLASH

The Federated Learning for Automated Selection of High-
band mmWave Sectors (FLASH) dataset is a real-world mul-
timodal dataset wherein sensory data from LiDAR, camera,
and GPS participate in federated learning to speed up beam
selection in mmWave V2X networks [6]. The sensor suite used
in FLASH is as follows: (a) two 16-channel LiDAR, (b) a side-
facing camera, and (c) GPS. Overall, FLASH contains 31923
samples (∼20 GB processed data), covering a wide variety of
real-world vehicle-to-BS LOS and NLOS scenarios.

Central to our implementation, the FLASH dataset consists
of four different categories of data, each consisting of a LOS
or NLOS connection and the potential presence of an obstacle
between the Rx and BS: (a) Cat. 1: LOS with no obstacles,
(b) Cat. 2: NLOS with a pedestrian, (c) Cat. 3: NLOS
with a static car, and (d) Cat. 4: NLOS with a moving car.
These categories are intended to comprehensively represent
the environments encountered in V2X settings. More detail
about these data categories, as well as the ML models they
are used with, can be found in [6].

B. Synthetic Dataset: Raymobtime

The Raymobtime dataset [10] consists of a high-fidelity
virtual V2I deployment for modeling 5G and mmWave MIMO
channel propagation within environments where buildings
flank the two sides of a road. Using software such as Simulator
for Urban MObility (SUMO), Blender, Blender Sensor Sim-
ulation (BlenSor), and Remcom Wireless Insite, a variety of
moving vehicles are generated to form unique traffic patterns
near a roadside Tx while image, LiDAR, and ray-tracing data
are collected. Overall, 256 beam configurations, consisting of
32 codebook elements at the Rx and eight elements at the Tx,
are collected, summing to over 6000 scenes (∼55 GB data).

VI. RESULTS

In this section, we perform experiments with TUNE on the
two datasets presented in Sec. V.

1) Implementation Details: We utilize categorical cross-
entropy loss for training with a batch size of 32 for 100
training epochs, implementing early experiment stopping if
the training accuracy does not increase within 10 consecutive
epochs, and use the Adam [20] optimizer with a learning rate
to 0.0001. Drawing from the results of [6], [7], we assume
the complexity of the categories increases in order from 1 to
2 to 4 to 3; therefore, seeing all modality data from FLASH,
we perform 4, 8, 64, or 16-way classification, with the classes
set to the number of available beam sectors, depending on
if the experimented category is 1, 2, 3, or 4, respectively.
We choose these specific numbers of sectors to highlight TL
performance in environments with different numbers of beams
and for ease of computation. A default 80% of the data from
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one category is used in training (unless otherwise specified in
each experiment), with the remaining 20% being partitioned
as 10% for each of the validation and testing partitions.

2) Performance Metrics: TUNE evaluates each model once
per epoch after training. We quantify results for each exper-
iment by the highest test accuracy over all epochs, as well
as the HSIC value between the transferred category data and
experimented category data when relevant.

A. Competing Methods

1) No transfer learning (S0): We train and test the model
with all the available data without using any prior knowledge.
For this strategy, all data from one category is used for training.
This is used to generate a model which the ML framework can
use for the other TL strategies.

2) Load and test (S1): Using the model weights generated
from training from other categories and strategies, we only
perform testing with data from the unseen scenario. The model
is not retrained or fine-tuned with the new data at any time.

3) Load and retrain (S2): By first stripping the weights
generated via training from previous data and categories, we
retrain the entire model with the data from the unseen scenario,
then perform testing with the new data.

4) Optimal TL (S3): TUNE dynamically selects the most
pertinent layers and freezes them for transferring the knowl-
edge from, following the layer selection technique described
in Sec. IV-D. We then retrain the rest of the layers of the
model with and test the model with the data from the unseen
scenario.

B. Learning over Different Environment with Varied Beams at
the Base Station

Trans.
Cat.

Exp.
Cat. 1

(Acc. (%))
2

(Acc. (%))
3

(Acc. (%))
4

(Acc. (%))

1 - 56.38 54.09 52.29
2 63.10 - 50.36 58.89
3 62.70 56.63 - 57.89
4 58.87 54.50 56.27 -

TABLE I: Testing accuracies of different categories with different
numbers of possible beams using S1, transferring the model obtained
by S0 from another category.

To set a comparison baseline for the other experiments,
we evaluate the performance of our framework by performing
S1 between all categories, with models generated by S0. As
shown in Tab. I, loading or transferring the Cat. 3 model
generally gives the best performance with an average accuracy
of 59.07% across all categories, while the Cat. 1 model has
the worst performance with an average accuracy of 54.25%.
Conversely, testing on Cat. 1 data generates the highest average
accuracy when experimented on at 61.56%, while Cat. 3
data gives the lowest average accuracy at 53.57%. Without
retraining, these results give us a simple glimpse of the
complexity of the environments each category represents and
a basic expectation of how the rest of the results will proceed.

Observation 1: Simply loading a pre-trained model and
testing the model on data from an unseen environment without
retraining does not yield competitive testing accuracies.

C. Selection of the Knowledge to be Transferred from Previ-
ously Seen Environments

Trans.
Cat.

S0 Acc.
(%)

Exp.
Cat. HSIC S1 Acc.

(%)
S3 Acc.

(%)
2 6.28E-3 44.13 69.25

1 96.20 3 4.32E-4 38.82 58.17
4 2.72E-3 37.66 64.31
1 4.64E-3 56.85 71.98

2 97.49 3 4.13E-4 33.89 55.53
4 2.45E-3 39.31 64.31
1 4.55E-3 57.46 72.78

3 96.89 2 6.36E-3 48.38 70.00
4 2.45E-3 37.99 67.59
1 4.90E-3 56.45 71.98

4 96.83 2 6.65E-3 44.00 67.75
3 4.16E-3 34.62 57.09

TABLE II: Accuracy and HSIC values for one transfer, transferring
category models generated using S0 to experimented categories using
S1 or S3. The highest accuracy experimented category results per
transferred category is in bold. The S1 and S3 results are generated
using 10% of the category data for training.

In this set of experiments, we analyze the best category
to initialize TL from, assuming data from all categories are
simultaneously available to the framework and using data from
each category without redundancy. With the models generated
by S0, we compare the testing accuracies and HSIC values
employed via S3 and 10% of the data for training to provide
some variation in accuracy. These experiments guide us by 1)
helping us select a defined ‘path’ between each of the four
categories for the highest efficacy TL in the FLASH dataset
and 2) confirming that HSIC values are a reliable indicator of
choosing the optimal pair of data categories that will increase
overall TL efficacy, i.e., there exists some correlation between
accuracy and HSIC values.

Immediately, we observe that testing accuracy and HSIC
scores are directly correlated. When normalizing HSIC vs.
accuracy, we obtain a correlation coefficient of r = 0.956. The
average HSIC values for each category are 4.70E-3, 6.43E-3,
4.20E-4, and 2.54E-3 for Cat. 1, 2, 3, and 4, respectively, and
transferring Cat. 3 provided the highest average S3 accuracy
of 70.12% when tested with data from all other categories.
With this information, we note that when performing multiple
transfers, selecting the category with the lowest HSIC value
for each transfer until the last transfer, for when we switch to
selecting the highest HSIC value, will generally yield good, if
not the best, results. As an example, when transferring data by
using all categories one-by-one, the overall best accuracy was
generated by subsequently selecting Cat. 3, 2, 4, and 1, with a
final accuracy of 72.88%; in comparison, the aforementioned
strategy yielded the second highest accuracy of 71.97% with
a subsequent selection of Cat. 3, 4, 2, and 1. For comparison
between methods, we include Tab II, generated by using S1
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with 10% training data, to show the effectiveness of retraining
using S3.

Observation 2: Given that data from multiple categories
are available, experimenting on the category with the highest
HSIC value will generally yield the best results.

D. Transferring Knowledge from the Synthetic Environment

Trans. Exp. S0 TL w/ TL
Cat. Cat. (Acc. (%), epochs) Strategy (Acc. (%), epochs)

- Synth. 29.99, 100 - -

Synth. 1 85.67, 71 S1 33.34, 97
S2 86.65, 57

Synth. 2 86.41, 61 S1 41.70, 96
S2 91.77, 100

Synth. 3 86.31, 76 S1 36.40, 99
S2 91.14, 79

Synth. 4 86.23, 69 S1 44.14, 100
S2 90.71, 69

TABLE III: Transferring the Synthetic data model to FLASH cate-
gories. Results of interest are in bold. While transferring the knowl-
edge from a synthetic to a real environment, general performance is
preserved or improved while retraining, though convergence times
may vary.

Finally, we explore the effects of the different training
strategies by transferring a model generated by the data from
the synthetic Raymobtime [10] dataset to each of categories
in the FLASH dataset, with results shown in Tab. III. Firstly,
we generate such a model using S0, and perform S0, as
well as TL with S1 and S2 with this model on each of
the different categories. Since the environments in the real-
world and synthetic environments are drastically different,
there is only a small chance that layers pertinent to the
models generated from both environments exist, so we do not
perform S3. In general, we observe that performing S2 yields
the highest accuracy among all the methods with an average
accuracy increase of 2.71% and average increase in the number
of epochs elapsed by seven due to early stopping across all
S2 runs when compared to S0 runs.

Observation 3: When transferring the model generated from
a synthetic environment, TUNE yields better performance via
S2 versus S0 with a comparable number of training epochs.

VII. CONCLUSION

In this paper, we explored the impacts of using a few differ-
ent TL and statistical dependency techniques with the goal of
improving mmWave V2X beam selection performance. Across
all TL experiments, we make three key observations: (1)
simply loading a model trained on a specific V2X environment
and testing said model on the data collected from a different
environment without any form of retraining does not yield
desirable results; (2) using a measure of statistical dependency,
HSIC, and assuming that data from multiple environments
is simultaneously available, selecting the environment which
yields the highest HSIC value will generally yield the best
accuracy as well; and (3) when transferring data from a
synthetic environment and testing on data from a real-world
environment, TL generally outperforms non-TL techniques by
a slight margin while not requiring a lot of new data.
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