
The Cost of Securing O-RAN
Joshua Groen

Institute for the Wireless IOT
Northeastern University

Boston, MA
groen.j@northeastern.edu

Brian Kim
Institute for the Wireless IOT

Northeastern University
Boston, MA

br.kim@northeastern.edu

Kaushik Chowdhury
Institute for the Wireless IOT

Northeastern University
Boston, MA

k.chowdhury@northeastern.edu

Abstract—A promising vision for the emerging next generation
of cellular networks is one that embraces openness, intelligence,
virtualization, and distributed computing. The Open Radio Ac-
cess Network (O-RAN) framework is making significant strides
toward these goals and is already seeing prototype deployments
in academia and industry. While there is general consensus
that this technology may disrupt the status quo by eliminating
vendor lock-ins, there are serious questions about the security
implications in such dis-aggregated networks. Indeed, securing
data and controlling interfaces must be a core consideration
in the design of O-RAN and cost/benefit tradeoffs need to
be rigorously analyzed, given the short time-scales of wireless
operation. In this paper, we undertake the first systematic study
on the impact of encryption on a critical O-RAN interface
(called ‘E2’) connecting the base station to a near-real time radio
intelligence controller using an implementation on the Colosseum
radio frequency (RF) emulator. The contributions of this paper
include quantitative measurements of added latency and CPU
utilization due to encryption on the E2 interface that could
impact data acquisition and machine learning models. In our
experiments we found encryption adds ≤ 50µs of delay and
CPU utilization limits throughput to approximately 500 Mbps.
We also include a theoretical model to extend this study to other
O-RAN implementations beyond the emulation environments of
the Colosseum.

Index Terms—Security, 5G, O-RAN, emulation, encryption

I. INTRODUCTION

The Open Radio Access Network (O-RAN) framework aims
to transform 5G and beyond cellular radio access networks
(RAN) into open, intelligent, virtualized, and fully inter-
operable RANs. O-RAN deployment defines dis-aggregated
and virtualized components connected through open and stan-
dardized interfaces [1]. This paradigm change is a potential
enabler of data-driven optimization, closed-loop control, and
automation [2], breaking vendor-locked closed networking ar-
chitectures. Alongside traditional telecommunication operators
who are active members of the O-RAN Alliance, the US
Department of Defense is actively promoting open interfaces
in both the RAN and the 5G Core that will allow for more
competition and innovation [3].
• Need for data-relaying within O-RAN: Recently, several
studies have described ways to optimize the open framework
through machine learning (ML), leveraging standardized APIs
that allow this functionality. [4] demonstrates a software-
defined radio (SDR) based testbed built on srsRAN. The
authors deploy an O-RAN compliant E2 Agent and show how
data can be passed across this interface. They also deploy two

Fig. 1: E2 interface connects near-RT RIC to eNB and nearly
every component in the next generation distributed gNB.

basic xApps, customizable microservices, to demonstrate the
capability of the near-real time (RT) RAN intelligent controller
(RIC) to both gather metrics from the distributed base station
(gNB) and make changes to physical resource assignment.
SCOPE [5] is an open-source framework with plug-and-play
containers for instantiating O-RAN infrastructure including the
gNB and user equipment (UE). It includes a data collection
module and a set of open APIs to allow users to control
network element functionalities in real time. The building
blocks provided in SCOPE are extended in [6], where the
authors demonstrate three different xApps that utilize ML to
provide closed-loop network control. All these capabilities
are integrated and discussed in [7]. The “OpenRAN Gym”
provides an open toolbox enabling end-to-end design, data col-
lection, and testing. This framework is deployed in Colosseum,
the world largest radio frequency (RF) emulator, allowing
users to create interesting scenarios at-scale that utilize large
amounts of data at the near-RT RIC. In a recently conducted
survey [8], the authors identify four critical features that
are important for O-RAN deployment: end-to-end security,
deterministic latency, physical layer real-time control, and
testing of ML-based RAN control applications.
• Challenges in data-relaying: The introduction of open
interfaces that carry data between dis-aggregated components
introduces new threats [9], [10]. In fact, [8], [10] point out that
one of the primary classes of threats arises from improper or
missing ciphering of the data sent across these open interfaces.

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 5506

In this paper, we study an interface that enables intelligent
and data-driven optimization, called the E2 interface, which
exists between the distributed gNB elements and the near-RT
RIC. The O-RAN Alliance recognized this new threat vector
and published guidance in [11] to ensure that the E2 interface
supports confidentiality, integrity, replay protection, and data
origin authentication.
• Motivation of our study: While there is general consensus
that security is essential to the deployment of 5G O-RAN
infrastructure [3], [8]–[12], to our knowledge there has been
no systematic study of the impact of securing the E2 interface
in an O-RAN implementation. It is vital that an informed
and risk-based approach is taken to adequately address se-
curity risks in O-RAN, while recognizing that any method
for enhancing security, such as adding encryption, comes at
a performance cost [12]. To extract actionable insights, we
thoroughly test and analyze the effects of adding encryption
to the E2 interface using the OpenRAN Gym framework built
on SCOPE and ColO-RAN [5]–[7].

Our main contributions are as follows:
• We perform the first ever experimental analysis of the

effects of adding O-RAN compliant encryption to the O-
RAN E2 interface using Colosseum. [Section IV-A]

• We validate at-scale a theoretical framework for calcu-
lating total network delay for O-RAN based distributed
functional units. [Section V-A]

• We extend these results by developing a general frame-
work for understanding the cost of encryption for future
O-RAN system deployments enabling researchers and
engineers to build security from the start. [Section V-E]

The rest of the paper is organized as follows. Section II
gives a brief overview of key O-RAN principles. Section III
describes our emulation environment and our experimental
procedures are detailed in Section IV. We analyze our results
in Section V and conclude in Section VI.

II. O-RAN BACKGROUND

We first review the implications of the four foundational
principles that O-RAN is built on: dis-aggregation; intelligent
control with the RICs; virtualization; and open interfaces using
the excellent tutorial paper [2].

A. O-RAN Principles and Framework

• Dis-aggregation: O-RAN dis-aggregation splits base sta-
tions into multiple functional units including: the Central
Unit (CU), a Distributed Unit (DU), and a Radio Unit
(RU). The CU is split further into the Control Plane
(CP) and the User Plane (UP). This logical split allows
different functions to be performed at different locations
and on different platforms across the network. These
functional units can be seen in Fig. 1.

• RAN Intelligent Control: The main function of the RIC is
to use Key Performance Metric (KPM) data and leverage
ML algorithms to determine and apply control policies
and actions. While there are two RICs in the O-RAN
framework, the non-RT RIC and the near-RT RIC, we

focus on the near-RT RIC in this paper as it controls and
optimizes resources via fine-grained data collection and
actions over the E2 interface on a time scale between
10ms and 1s. As Fig. 1 demonstrates, the near-RT
RIC interfaces with nearly every functional unit of the
distributed gNB and legacy base stations (eNBs). The
near-RT RIC also hosts xApps that can be used to perform
radio resource management [2].

• Virtualization: All the of components shown in Fig.
1 can be deployed as virtualized infrastructure. This
virtualization enables a decoupling between hardware
and software components, standardization of hardware,
sharing of hardware among different tenants, and auto-
mated deployment of RAN functions. While decoupling
hardware and software creates an open environment for
faster development, it also raises encryption requirements
for data traversing the E2 interface. Thus, it is important
to fully understand the capabilities of the distributed
hardware and expected computational load to ensure the
right distribution of resources.

• Open Interfaces: The open interfaces are one of the keys
to overcome the traditional RAN black box approach
as they expose network parameters to the RICs and
enable data analytic and ML-enabled control. The major
interfaces include: the O1 interface, which is the primary
interface with the non-RT-RIC responsible for enabling
operations and maintenance; the A1 interface which con-
nects the two RICs and is used for deploying policy-based
guidance; the Open Fronthaul which connects a DU to
one or multiple RUs inside the same gNB [13]; and the
E2 interface, which is the key interface that connects the
near-RT RIC to the RAN (see Fig. 1). The E2 interface
enables the collection of metrics from the RAN to the
near-RT RIC and allows the RIC to control multiple func-
tions in the distributed gNB. A comprehensive discussion
of these and additional interfaces can be found in [2], [4],
[8], [11]–[13].

III. O-RAN IMPLEMENTATION IN COLOSSEUM

Colosseum is the world’s largest wireless network emula-
tor with hardware in-the-loop [14]. It supports experimental
research through virtualized protocol stacks, enabling users
to test full-protocol solutions at scale, with real hardware
devices, in realistic emulated RF environments with complex
channel interactions. The key building blocks for deploying
full protocol stacks are 128 Standard Radio Nodes (SRN).
Each SRN consists of a 48-core Intel Xeon E5-2650 CPU with
an NVIDIA Tesla k40m GPU connected to an USRP X310
SDR. Users can deploy custom protocol stacks by deploying
Linux Containers (LXC) to the bare-metal SRNs.

The Colosseum environment also provides several RF
scenarios created through its Massive Channel Emulator
(MCHEM) and managed by simple APIs. This enables users to
test custom protocol stacks in a wide range of both artificially
constructed (such as a fixed path loss) and realistic RF
scenarios built from field observations.

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

5507

Fig. 2: O-RAN system consisting of three UEs, a gNB, and
the near-RT RIC. Each component is implemented in an LXC
on top of an SRN within Colosseum.

We utilize the srsRAN based SCOPE [5] framework to
implement a softwarized RAN for both the gNB and multiple
UEs. SCOPE extends srsLTE (now srsRAN) version 20.04
by adding an E2 interface, several open APIs to facilitate run-
time reconfiguration of the gNB, and additional data collection
tools. We utilize the ColO-RAN [6] framework for the near-RT
RIC implementation. ColO-RAN is a minimal version of the
O-RAN Software Community near-RT RIC (Bronze release).
The ColO-RAN LXC includes a minimal near-RT RIC in the
form of several Docker containers to provide the functions of
the near-RT RIC. In particular, it provides the E2 interface
functionality to connect to the RAN nodes for data collection
and control, and a sample xApp that collects basic KPMs from
the gNB.

To enable encryption, we add the strongSwan open source
IPsec-based VPN to both the SCOPE and ColO-RAN LXCs.
The full IPsec configuration is described in paragraph IV-B.
We also add several simple scripts to automate data collection
on E2 interface performance.

IV. EXPERIMENT OVERVIEW

A. System Overview

Our experimental system (see Fig. 2) is composed of five
blocks: three UEs, a gNB, and the near-RT RIC. Each block
is implemented inside an LXC on a separate SRN. The UEs
are connected to the gNB over an emulated RF channel where
each UE is assigned an unique slice representing the three
main use cases for 5G: enhanced Mobile Brodband (eMMB),
Ultra Reliable Low Latency Communications (URLLC), and
massive Machine Type Communications (mMTC) [15]. Each
slice has its own traffic pattern, physical resource block
assignment, and scheduling policy. The gNB is connected to
the near-RT RIC over a wired 10 Gbps backbone network.
We implement the sample KPM monitoring xApp from [6]
that periodically polls the gNB for 6 KPMs for each UE. This
generates ≤ 200Kbps of traffic on the E2 interface.

We capture all traffic traversing the E2 interface at the gNB
for over 20 minutes. Stream Control Transmission Protocol
(SCTP) is used as the transport layer protocol for all traffic.

Fig. 3: E2 traffic displays a common pattern of one small
X2AP packet then one large X2AP packet followed by a
SACK as seen in this flow graph.

Fig. 3 illustrates a typical example of the captured traffic.
First, the gNB sends a small amount of data using the
X2 Application Protocol (X2AP). Next, the gNB sends a
large amount of data using X2AP over SCTP. Finally, the
near-RT RIC responds with a fixed size, 62 Byte, Selective
Acknowledgment (SACK). This pattern is consistent because
SCTP specifies a SACK should be generated for every second
packet received [16]. While we are able to capture the elapsed
time between packet captures, we do not know when the gNB
starts processing or transmitting a packet. However, we can
observe the delay between the transmission of the large X2AP
packet and the reception of the SACK at the gNB. For these
reasons, we first study the effect of encryption on the SACK.

B. Securing the E2 Interface

After establishing a baseline performance without encryp-
tion, we add O-RAN compliant encryption as specified in [11]
to the E2 interface. We implement IPsec with Encapsulating
Security Payload (ESP) in tunnel mode. Tunnel mode creates
a new IP header for each packet and protects the integrity of
both the data and original IP header for each packet [17]. We
use AES-256 for encryption and SHA2-256 for the authen-
tication hash function. AES-256 is a high speed symmetric
encryption algorithm that uses a fixed block size of 128 bits
and a key size of 256 bits, and performs 14 transformation
rounds [18]. SHA2-256 uses eight 32-bit words and performs
64 transformation rounds to compute a 256 bit hash [19].
However, only the first 128 bits of the hash are included in
the IPsec trailer. IPsec, as configured in our test, provides all
the required services listed in [11]. With this configuration,
IPsec adds at least 57 Bytes of overhead to each packet.
However, because both AES-256 and SHA2-256 require fixed
input block sizes, padding may be added causing the overhead
to further increase. For example, encrypting the SACK adds 76
Bytes for a total CT SACK length of 138 Bytes. We generate
the same UE traffic described in Section IV-A, poll the gNB
for the same KPMs, and again capture the traffic traversing
the E2 interface at the gNB. Fig. 4 shows the distribution
of delay times for both un-encrypted (plain text or PT) and

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

5508

Fig. 4: SACK delay distribution with and without encryption.

encrypted (cypher text or CT) SACKs. It is immediately clear
that encryption adds, on average, approximately 22µs of delay.

V. ANALYSIS AND FURTHER RESULTS

We immediately observe there is some cost to add encryp-
tion to the E2 link. It is essential for O-RAN researchers,
engineers, and system architects to fully understand both the
cause and the impact of any extra overhead.

A. Types of Delay

In packet switched networks there are four primary sources
of delay at each node along the path: queuing delay, propa-
gation delay, transmission delay, and nodal processing delay
[20]. Specifically, the total delay can be expressed as

Dtotal = Dque +Dprop +Dtrans +Dproc. (1)

• Queuing Delay: In our test environment there is virtually
no competing traffic, so it is safe to assume Dque = 0. In
more complex networks, this may not be true. However,
even in congested networks, the queuing delay will be
essentially constant with or without encryption.

• Propagation Delay: The propagation delay is strictly a
function of the physical length and propagation speed
of the link. The propagation speed depends on the link
type, but is typically on the order of 2 × 108m/s [20].
For our environment, we assume a length of 100m giving
Dprop = 0.05µs. This will change for other systems, but
will remain constant regardless of encryption.

• Transmission Delay: The transmission delay is a function
of the packet size (in bits), L, and the link transmission
rate, R, which is defined as Dtrans = L/R. For any given
system, R is fixed but L will increase with encryption.
Table I lists the calculated transmission delays, with and
without encryption, based on the average packet length
of the three types of packets we observe.

• Processing Delay: Typically the processing delay is de-
fined as the time required for intermediate nodes to
examine the packet header and determine where to direct

the packet, though it can also include other factors such
as checking for bit-level errors [20]. For this analysis, it
makes sense to include the encryption delay in the pro-
cessing delay because it is essential to pass the payload
to lower or higher network layers.

Packet Type Plain Text Cypher Text
SACK 0.0496µs 0.1104µs
Short X2AP 0.1560µs 0.2040µs
Long X2AP 1.140µs 1.188µs

TABLE I: Calculated transmission delay for 3 types of packets
with and without encryption.

B. SACK Analysis

The SACK packet is ideal for an initial analysis because the
packet size is fixed (PT = 62B, CT = 138B) and the total
delay we observe in our experiments is very tightly grouped
as seen in Fig. 4. The total average delay we observe for the
PT SACK is 61.12 µs, while the CT SACK is 82.64 µs. From
Fig. 3, we can see that the total delay for a SACK can be
expressed as DSACK

total = 2×Dprop +Dtrans +Dproc. Given
the total delay, the transmission delays in Table I, and the
calculated propagation delay (Section V-A), we can calculate
the average processing delay; for the PT SACK it is 60.97 µs
while the CT SACK is 82.64 µs. In Colosseum, encryption
on the E2 link adds approximately 22 µs of delay to small
packets. However, the near-RT RIC is designed to operate on
scales from 10 ms to 1 s. With low traffic load (≤ 200Kbps)
and small packets (≤ 138B), encryption has no meaningful
impact on E2 interface traffic.

C. Packet Size Analysis

Section V-B also shows that the processing delay accounts
for at least 99.75% of the total delay for the SACK, regardless
of encryption. In other words, the delay for short packets
is dominated by the processing delay. Given the calculated
propagation and transmission delays, it is likely that processing
delay dominates in equation (1) for larger packets as well.
However, since we do not know the exact start times for
transmitting the long X2AP packets, we conduct another
experiment to confirm this hypothesis.

To fully quantify the effect of encryption for packets of
various lengths, we use ping (ICMP echo) of various lengths
to accurately capture the network round trip time (RTT). We
start with a 48 Byte payload for the ping and increment the
size by 5 Bytes until we reach 1486 Bytes. After the ethernet
frame (14 Bytes) is added, this fully captures the range of
packet sizes we observe in our experiments (62 Bytes to 1500
Bytes). For each step size, we send 10 pings with 250ms
between each ping. The RTT is expressed as

RTT = 2× (Dproc +Dtrans +Dprop). (2)

Given that 2 × Dprop = 0.1µs, 2 × Dtrans ≤ 2.4µs,
and RTT ≥ 50µs, we can approximate equation (2) as
Dproc ≈ RTT

2 . From the results of the experiment in Fig. 5, we
observe that the processing delay increases with packet length

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

5509

when sending encrypted traffic. However, the processing delay
difference between CT and PT is △Dproc ≤ 50µs for all
tested packet sizes. We can conclude that for all packet sizes
from 62 B to 1500 B, encryption has minimal impact on
E2 traffic.

Fig. 5: Processing delay as a function of packet size for PT
and CT traffic.

D. Throughput Analysis

Finally, we design an experiment to quantify the effect of
encryption on the total traffic throughput, T . We use iperf3 to
generate traffic at specific bit rates for 10 seconds. We start at
25 Mbps and increment the transmission rate. It is seen from
Fig. 6 that the maximum encryption rate our system is capable
of is approximately 500 Mbps.

Fig. 6: Measured throughput as a function of attempted
transmission rate for PT and CT traffic.

To understand the upper bound of the throughput with
encryption seen in Fig. 6, we analyze CPU utilization. We
capture CPU utilization on the gNB (sending node) for each

attempted transmission rate using iperf3. Fig. 7 shows the re-
sults for both PT and CT. While CPU utilization does increase
for both types of traffic, we can see that encryption is very
CPU intensive. Fig. 7(a) shows that when sending PT, the CPU
utilization increases proportional to 0.00365×T whereas Fig.
7(b) shows the CPU utilization for CT grows proportional to
0.2×T until it reaches saturation. Therefore, we conclude that
encrypting all traffic increases CPU utilization by roughly two
orders of magnitude compared to PT traffic. CPU utilization
is the limiting factor for encrypting traffic when the
throughput is above 500 Mbps.

(a) PT CPU utilization grows proportional to 0.00365× T .

(b) CT CPU utilization grows proportional to 0.2×T until it reaches
the maximum utilization allowable. After this threshold, throughput
and CPU utilization remain constant.

Fig. 7: Actual throughput and CPU utilization as functions of
attempted transmission rate for PT and CT traffic.

E. Cost of Security Framework

These results verify that processing delay is the dominant
factor in our test system. To precisely extend these results to
other systems, the specific system parameters would have to be
known. However, it is possible to generalize these results and
use them as a guide when designing future O-RAN systems.

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

5510

Generalizing Table I, we can conclude that for any system op-
erating over GigabitEthernet, or faster, △Dtrans << △Dproc.
From the calculations in Section V-A, we can see that for any
network where the total distance between the base station and
near-RT RIC is on the order of tens of kilometers or less,
△Dprop << △Dproc. Section V-A holds for any system
because intermediate nodes do not perform decryption, so
△Dque ≈ 0. Therefore, for most O-RAN systems, the total
overhead cost of encryption, △Dtotal can be approximated as

△Dtotal ≈ △Dproc. (3)

Even in the rare case where these assumptions do not hold for a
particular O-RAN system, the added latency due to encryption
will still primarily affect the processing delay. Equation (3)
provides a useful framework for system designers and archi-
tects. Sufficent processing power is the key tradeoff required to
enable encryption. Any dis-aggregated gNB component must
have enough CPU resources to manage all of its explicit
functions. However, as the total traffic over the E2 interface
(and other encrypted interfaces) increases, the CPU resources
needed for encryption alone will increase. System designers
can choose to add dedicated hardware for the encryption to
offload the CPU burden, increase the total compute resources,
or set strict limits on the amount of traffic that can be sent over
the E2 interface. In Colosseum, we must limit E2 traffic to 500
Mbps or less. More modern CPUs and encryption algorithms
may increase that limit significantly. Therefore, system engi-
neers must understand the amount of traffic expected across
a given interface and include the overhead of encryption for
that level of traffic in their compute budget.

VI. CONCLUSION AND FUTURE WORK

5G is a critical strategic technology that offers higher
performance and additional data-driven intelligent capabilities
[3]. O-RAN enables these capabilities primarily through its
open interfaces which expose telemetry and its RICs which are
capable of hosting powerful ML-driven xApps to customize
radio resource management. It is imperative that future O-
RAN deployments provide sufficient protection to this E2 link
in accordance with [11]. We conducted a thorough experimen-
tal and theoretical analysis and have shown that, for the E2
interface, the cost of securing O-RAN is low. However, sys-
tem designers must ensure O-RAN dis-aggregated nodes have
sufficient computing resources to handle both their explicit
function and encryption overhead for the expected traffic load.
Further, they must take steps to ensure that the actual traffic
load does not exceed the system budget.

Significant work remains to fully understand how to secure
O-RAN and any associated costs that must be planned for.
There may remain significant hidden costs for securing other
interfaces or for ensuring secure xApp development and de-
ployment. Future work should examine other interfaces, such
as the Open Fronthaul (see Fig. 1), which must operate with
significantly lower latency and higher throughput. Additional
work also needs to be done to ensure security in a multi-vendor
xApp environment. [3], [10] call for a zero-trust approach to

building out the O-RAN system. This framework offers a good
starting point, but significant work needs to be done to actually
implement these principles and thoroughly understand the Cost
of Securing O-RAN.

ACKNOWLEDGMENT

Special thanks to Leonardo Bonati and Michele Polese for
all the tips on implementing an O-RAN system in Colosseum.

REFERENCES

[1] O-RAN Working Group 1, “O-RAN Architecture Description 5.00,”
ORAN.WG1.O-RAN-Architecture-Description-v05.00, Tech. Rep., July
2021.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” arXiv preprint arXiv:2202.01032, 2022.

[3] “5G Strategy Implementation Plan,” Department of Defense, Tech. Rep.,
December 2020.

[4] P. S. Upadhyaya, A. S. Abdalla, V. Marojevic, J. H. Reed, and V. K.
Shah, “Prototyping Next-Generation O-RAN Research Testbeds with
SDRs,” arXiv preprint arXiv:2205.13178, 2022.

[5] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An open
and softwarized prototyping platform for NextG systems,” in Proceed-
ings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, 2021, pp. 415–426.

[6] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing machine learning-based xApps for open RAN closed-
loop control on programmable experimental platforms,” IEEE Transac-
tions on Mobile Computing, 2022.

[7] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “OpenRAN
Gym: An Open Toolbox for Data Collection and Experimentation with
AI in O-RAN,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2022, pp. 518–523.

[8] A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward
Next Generation Open Radio Access Networks–What O-RAN Can and
Cannot Do!” IEEE Network, 2022.

[9] C. Shen, Y. Xiao, Y. Ma, J. Chen, C.-M. Chiang, S. Chen, and Y. Pan,
“Security Threat Analysis and Treatment Strategy for ORAN,” in 2022
24th International Conference on Advanced Communication Technology
(ICACT). IEEE, 2022, pp. 417–422.

[10] K. Ramezanpour and J. Jagannath, “Intelligent zero trust architecture for
5G/6G networks: Principles, challenges, and the role of machine learning
in the context of O-RAN,” Computer Networks, p. 109358, 2022.

[11] O-RAN Working Group 3, “Near-Real-time RAN Intelligent
Controller Architecture & E2 General Aspects and Principles,”
ORAN.WG3.E2GAP-v02.02, Tech. Rep., July 2022.

[12] J. Boswell and S. Poretsky, “Security considerations of open ran,”
Stockholm: Ericsson, 2020.

[13] O-RAN Working Group 4, “O-RAN Fronthaul Control, User and
Synchronization Plane Specification 7.0,” ORAN-WG4.CUS.0-v07.00,
Tech. Rep., July 2021.

[14] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder et al., “Colos-
seum: Large-scale wireless experimentation through hardware-in-the-
loop network emulation,” in 2021 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN). IEEE, 2021, pp. 105–
113.

[15] V. K. Choyi, A. Abdel-Hamid, Y. Shah, S. Ferdi, and A. Brusilovsky,
“Network slice selection, assignment and routing within 5G Networks,”
in 2016 IEEE Conference on Standards for Communications and Net-
working (CSCN), 2016, pp. 1–7.

[16] R. Stewart, “Stream control transmission protocol (RFC 4960),” Tech.
Rep., 2007.

[17] S. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey,
and S. R. Sharma, “Guide to IPsec VPNs:.” NIST Special Publication,
2005.

[18] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced Encryption Standard (AES),” 2001-11-26 2001.

[19] Q. Dang, “Secure hash standard,” 2015-08-04 2015.
[20] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down

Approach, Seventh Eddition, 2017.

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

5511

