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Abstract—Opening the Citizen Broadband Radio Service
(CBRS) band in the US to secondary users offers unprecedented
opportunities to LTE and 5G networks, as long as incumbent
radar signals are protected from interference. Towards this
aim, the US Federal Communications Commission (FCC) re-
quires Environmental Sensing Capabilities (ESCs) to be installed
along the coastal regions. Furthermore, FCC mandates that
the secondary users transmit with low power levels, such that
the aggregated interference and noise power in the vicinity of
ESC sensors remains below -109 dBm/MHz. At this interference
level, the ESC must detect 99% of radar pulses with peak
power of at least -89 dBm/MHz. In this paper, we design an
enhanced ESC sensor, called ESC+, that leverages the deep
learning framework called ‘you only look once’ (YOLO) for
signal detection using spectrograms. We propose a two-stage
spectrogram-based coarse and fine signal analysis method for:
(i) detecting, and characterizing radar pulses in environments
where the aggregated noise and interference level goes beyond
FCC restrictions, and (ii) detecting and characterizing other
signal types (e.g., 5G and LTE) in the CBRS band, with a
goal of determining unauthorized users. We generate a realistic
spectrogram dataset in MATLAB consisting of three signal types
of radar, 5G, and LTE where the aggregated interference and
noise power occurring concurrently with the radar pulse is varied
upto -104 dBm/MHz. We show 100% radar pulse detection in
interference and noise levels of up to 3 dB higher than what is
required today.

Index Terms—Spectrogram, YOLO, CBRS band, Incumbent
radar, PAL user.

I. INTRODUCTION

The Citizens Broadband Radio Service (CBRS) band in
the US offers new spectrum resources in the desirable mid-
band frequencies between 3.55 and 3.7 GHz, for deploying
4G LTE and 5G networks as well as internet of things (IoT)
applications. As a necessary condition to use this band, higher
priority incumbent users of the CBRS band (e.g., naval radar
signals) must be protected from interference [1]. Towards
this aim, the Federal Communications Commission (FCC)
defines regulations for hierarchical access priority in the CBRS
band and transmission power level control in areas along the
coastline [1], [2].
• Hierarchical spectrum access priority in the CBRS band:
Spectrum access priority in the CBRS band has a three-tier
structure as shown in Fig. 1 with: (i) naval radar at the apex
of the pyramid, (ii) the Priority Access Licenses (PAL) users
in the middle tier, and (iii) the General Authorized Access
(GAA) users at the bottom tier. PAL users purchase a license
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Fig. 1: The proposed ESC+ that detects, classifies, and local-
izes different signals in the shared CBRS spectrum, through
YOLOv3 framework. The labels and frequency boundaries of
each detected signal can be compared against SAS registered
users to find unauthorized signals.

in the first 100 MHz of the CBRS band to acquire transmission
rights in the band, while GAA users opportunistically use the
band when no other transmission is going on. Spectrum access
is managed by a central entity known as Spectrum Access
System (SAS) that has no control over the incumbent users,
but grants access to the registered PAL and GAA users [1].
Both PAL and GAA users need to register with SAS to be
considered as authorized users, and to be granted access based
on their priority. The SAS relies on sensing information from
an array of geographically distributed Environmental Sensing
Capabilities (ESCs) for allocating the spectrum to PAL and
GAA users. The frequency bands are allocated only if no radar
pulse is detected in them. Furthermore, based on the noise
floor information received from ESC sensors and PAL/GAA
locations, SAS mandates the latter to transmit with a power
level such that the aggregated noise and interference level in
the vicinity of ESC sensors remains below -109 dBm/MHz [2].
The areas in the vicinity of ESC sensors, where the PAL/GAA
transmission power level restrictions are enforced with a goal
of protecting the radar signal, are called whisper zones. With
radar pulses having at least -89 dBm/MHz power, ESCs should
be designed such that detection of 99% of radar pulses in SINR
20 dB is guaranteed [3].
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• Problem definition: Previous work show promising results
in the use of deep learning for detecting radar pulses in
unoccupied bands [4], [5] and in the presence of a weak LTE
signal in the radar band [6]. However, two interesting questions
remain: (i) Could advanced signal analysis methods help in
relaxing FCC regulations regarding the limited power levels
of the secondary users [2] in the whisper zone? Deep learning-
based approaches may eliminate the need for hand-crafted
detection of signal features. Furthermore, given the ability to
learn subtle signal variations across time-frequency axes, our
hypothesis is that deep learning may be able to detect radar
pulses embedded within stronger LTE and 5G signals. (ii)
Could the ESC sensor perform a larger role beyond detecting
only radar pulses? Currently, there is no standards-defined
requirement within ESCs to detect unauthorized transmissions
such as LTE/5G users that are not registered with SAS to
operate in the band. Clearly, without such safeguards, paying
LTE/5G service providers are not incentivized to use the CBRS
band.
• Proposed solution: In this paper, we propose an enhanced
ESC sensor, called ESC+, that addresses the two aforemen-
tioned gaps: (i) ESC+ can detect radar pulses within the
time-frequency boundaries of an existing PAL signal with
power higher than FCC-mandated level. This provides the
opportunity to relax FCC restrictions in the whisper zone and
helps achieve better LTE/5G network connectivity. (ii) ESC+
detects, classifies, and localizes different signal types in the
spectrograms obtained within the CBRS band. The list of
detected signals and their occupied bands can be shared with
SAS, which is then compared against SAS list of registered
users in order to label each transmission as authorized or
unauthorized. Compared to previous work [4], [6], [5], we
assume a more complex environment where (either authorized
or unauthorized) LTE and 5G signals occupy different bands
concurrently with radar signals. We formulate signal detection,
classification, and localization as an object detection problem.
We train YOLOv3 framework [7] to effectively detect, classify,
and localize three signal types of 5G, LTE, and radar in the
spectrograms of the CBRS band, as shown in Fig. 1.
• Paper contributions: Our contributions are as follows:

• We propose the design of an enhanced ESC sensor
called ESC+, as shown in Fig. 1. ESC+ detects weak
radar signals within overlapping LTE/5G PAL-allocated
frequencies, as well as 5G and LTE signals in the CBRS
spectrum.

• We use a deep-learning-based approach, specifically
YOLOv3, for not only signal detection, but also determin-
ing the signal type, and localizing the signal by marking
the specific lower and higher end points of the spectrum
band that it occupies.

• We propose a two-stage signal detection process using
two differently trained YOLOv3 frameworks. In the first
stage, spectrograms showing the whole 100 MHz CBRS
band are fed to a YOLOv3 framework that is trained
on 100 MHz-extent spectrograms, for a coarse signal
detection. Then, the detected signals from this stage are

cropped, stretched, and fed to another YOLOv3 in the
second stage for fine signal detection.

• The proposed ESC+ is validated on a diverse simulated
MATLAB dataset generated for a complex but realistic
environment, where multiple LTE/5G transmissions of
different bandwidths exist in close proximity along the
frequency scale with possible overlapping radar pulses.

II. RELATED WORK

In this section, we first present a review of the existing
literature on spectrogram-based signal detection. Then, we
review the work focusing on radar detection in the CBRS band.
Signal Detection using YOLO: A variant of YOLO, called
as tiny-YOLO, was used in [8] to detect the boundaries of
signals of 20-modulation classes as one single class.Vagollari
et al. [9] combine signal detection and modulation classifi-
cation into a single problem, using YOLO. They consider a
10-class modulation classification spectrogram dataset and re-
train the last few layers of YOLOv1 pretrained on ImageNet
dataset, with their spectrogram dataset. Fonseca et al. [10]
detect and classify WiFi and LTE signals in over-the-air
spectrograms besides extracting transmission features such as
center frequency, bandwidth, and duty cycle through YOLO
object detection framework. Basak et al. [11] train a variant of
YOLO-lite framework to classify 10 classes comprising 2 WiFi
versions and 8 drone signals in the ISM band. They consider
scenes from an over-the-air dataset of single or multiple
signals with overlapping and non-overlapping cases. Ghanney
et al. [12] detect radio frequency interference in a National
Radio Astronomy Observatory dataset. They create images of
power spectral density graphs for each recording. They use
two methods of supervised learning through YOLOv3 and
unsupervised using convolutional autoencoder for interference
detection.
Radar Detection in the CBRS Band: Lees et al. [4] show
the superiority of deep learning over classical algorithms for
radar detection by creating independent spectrograms of each
of the 10 MHz channels in the CBRS band, and classifying
them in parallel in terms of the presence or absence of
radar signals. While they use a wide variety of machine
learning and deep learning classifiers, they do not localize the
signals or estimate their bandwidths. Sarkar et al. [6] propose
a Spectrogram Image Learning (SIL) framework based on
YOLO for real-time detection of radar (incumbent) signals and
estimating their bandwidths. This work focuses on detecting
radar signals in the presence of noise and weak interference
from secondary users. Caromi et al. [5] detect radar signals
in the CBRS band using a variety of Convolutional Neural
Networks (CNNs). They perform both raw signal magnitude-
based and spectrogram-based binary classification indicating
the presence or absence of the radar signal.

None of the studied previous work on the CBRS band
propose detecting and characterizing different types of signals,
or radar detection in environments with noise higher than FCC
regulations in the whisper zone.
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III. SPECTROGRAM DATASET DESCRIPTION

To evaluate our proposed ESC+ sensor, we generate a
dataset in MATLAB with 1300+ spectrogram scenes of sim-
ulated time domain signals in the CBRS band. These signals
are of the three following types: (i) Ship-borne radar as the
incumbent user of the CBRS band. For realistic evaluation,
we allow the radar pulses to appear at any frequency in the
spectrogram, both overlapping or non-overlapping with other
signals, (ii) LTE, and (iii) 5G signals that may or may not be
registered within SAS. At the end of the detection process, the
ESC+ sensor generates a list of detected 5G and LTE signals
that is shared with the SAS. By comparing against the list of
registered users, the SAS can identify unauthorized 5G and
LTE users.

The main properties of the three signals in our dataset are
described below.
Power values: As mandated by FCC regulations, the cumula-
tive power of Additive White Gaussian Noise (AWGN) and
other sources of interference must be no more than -109
dBm/MHz around the ESC sensor [2]. We define SINR as
10× log10(Pradar/Pnoise), where Pradar is peak radar power per
MHz, and Pnoise is average noise and interference power per
MHz of the radar band. In this case, radar pulses with at least
-89 dBm/MHz of peak power (at least 20 dB SINR) must be
detected with 99% accuracy [3]. We vary the power of radar
pulses in the range of -89 to -79 dBm/MHz to emulate SINRs
in the range of 20 to 30 dB. For the noise and interference
power, we go upto 5 dB beyond FCC limit, and allow the
noise and interference power to vary in the range of -109 to
-104 dBm/MHz. In the scenes where radar overlaps with the
PAL user signal (i.e., LTE or 5G), we allocate 25% of the
power to AWGN and 75% to the LTE/5G signal, to ensure
the SINR is in the range of 15 and 30 dB.
Signal bandwidth: According to FCC regulations, each CBRS
vendor can purchase and aggregate up to four 10 MHz
channels in the CBRS band. Therefore, the largest bandwidth
that PAL users can transmit is 40 MHz. Based on this, we
randomize the bandwidth of 5G and LTE signals to have all
the standard bandwidths in the range of 5 to 40 MHz.
Radar parameters: We use standard compliant radar type-1
that is used in naval radars [3]. We use the tool released by
National Institute of Standards and Technology (NIST) in [13],
and set the pulse width of radar pulses to 0.5 µs. We set the
pulse per burst parameter as 20 and pulse repetition rate as
1010 per second.
Sampling rate and duration: The 10 MHz channels in the
CBRS band can be monitored separately for radar pulses with
sampling rate of 10 MHz, or the whole CBRS band can be
monitored at once with a higher sampling rate. As the PAL
users can exist in the first 100 MHz of the CBRS band between
3.55 GHz and 3.65 GHz, our proposed ESC+ monitors the
entire 100 MHz at once and samples the wireless channel
with 100 MHz sampling rate. Consequently, the spectrograms
that we create out of the sampled data span 100 MHz on
the horizontal axis. We sample the CBRS band for 20 ms,
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Fig. 2: A sample spectrogram in the dataset with 10 MHz 5G
and 10 MHz LTE. A fade radar pulse is overlapping with the
LTE, which can be seen in the red circle. The radar pulse
has peak power of -89 dBm/MHz and the aggregated LTE
and noise power in its background are -104 dBm/MHz, which
leads to 5 dB lower SINR compared to FCC regulations for
the whisper zone.

and so the time-scale of the spectrogram spans to 20 ms. We
assume that all the three signals of radar, 5G, and LTE that
might appear in each scene span throughout this 20 ms, while
occupying different frequency bands as shown in Fig. 2.
LTE and 5G spectrum usage technique: As per FCC regula-
tions in the CBRS band [1], we create LTE and 5G signals in
the Time Division Duplex (TDD) mode.

In the next section, we describe the proposed signal detec-
tion method within the proposed ESC+.

IV. PROPOSED METHOD

Our vision of ESC+ enhances the standard ESC, thereby
allowing it to detect the radar pulses that are overlapping
with secondary user signals (i.e., 5G or LTE) even when
the aggregated interference and noise power in the radar
band is higher than the FCC-specified limit [2]. To make
radar detection possible in high noise regimes, we propose
the use of deep learning for the ESC+ design. Specifically,
we formulate signal detection and localization as an object
detection problem, where a deep learning framework is trained
to detect, classify, and localize different objects in an image.
For the object detection framework, we use YOLOv3 [7] that
provides signal detection, classification, and localization in
spectrograms of the CBRS band, in one pass. The proposed
ESC+ system is described next.

A. ESC+ System Overview

The ESC+ sensor consists of a two-stage detection process,
as shown in Fig. 3. In the beginning, the ESC+ senses
the CBRS band between 3.55 GHz and 3.65 GHz in one
shot for 20 ms with 100 MHz sampling rate and creates a
spectrogram. In the first stage, this spectrogram with 100 MHz
frequency content is processed through YOLOv3 framework.
The output of YOLOv3 consists of detected signals attributed
with parameters including (i) label, (ii) detection probability,
and (iii) bounding boxes around each detected signal that
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Fig. 3: The proposed ESC+ with two-stage signal (i.e., radar,
5G, and LTE) detection and localization using YOLOv3 object
detection framework.

determine signal frequency and time boundaries. In this stage,
signals with wider occupied frequency bands that are easily
visible in the spectrogram are detected with high bounding box
precision. However, narrower signals that occupy a smaller
portion of the 100 MHz spectrum extent inside the wider LTE
and 5G might be missed, or if detected, might not be localized
with accurate bounding boxes. To solve this, we propose to
crop the detected signals in the spectrogram, and zoom into
them to perform a fine signal detection with a second YOLOv3
framework. These two stages are described in the remainder
of this section.

B. Stage 1: Coarse Signal Detection

For coarse signal detection in stage 1, we train a YOLO
framework, denoted as YOLOv3_coarse, with spectrograms
that have the full frequency content of 100 MHz. We follow the
YOLOv3-specific steps of anchor generation before training,
and adjusting the learning rate during training [7], [14]. For
the signal labels, we use 3 labels of radar, 5G, and LTE to
characterize each signal pattern separately. As seen in Fig. 2,
5G and LTE signals have different patterns in the spectrogram.
Furthermore, the faded radar pulse –that is overlapping with
the LTE and is shown by zooming in the red circle– shows
a completely different pattern. The detected signals are dis-
tinguished and labeled by trained YOLOv3 framework based
on their distinct patterns in the spectrogram. Fig. 2 further
shows our complicated scenario in high noise regime with
faded signals that are in close proximity to each other.

In the first stage of signal detection within ESC+, we
perform a coarse detection of the signals that exist in the
spectrogram of the CBRS band. In this stage, wider band
signals of 5G and LTE that occupy at least 5 MHz bandwidth,
which corresponds to at least 5% of the frequency content

True radar
boundaries

predicted radar
boundaries

cropping
predicted

boundaries
λλ

stretch to original
spectrogram width

Stage 1: 
YOLOv3_coarse

Stage 2: 
YOLOv3_fine

cropping predicted
boundaries  
+ λ margins

Signal
might
be lost

More accurate
bounding box

prediction

(a)

(b)

(c)

Fig. 4: The two-stage coarse and fine signal detection. (a)
Stage 1: Coarse signal detection, (b) Proper cropping and
stretching the predicted signals of stage 1, (c) Stage 2: Fine
signal detection on the stretched (zoomed) spectrogram that
leads to more accurate localization of narrow signals. In all
spectrograms in this diagram, the originally faded radar pulses
are manually whitened to be visible in the diagram.

of each frame, are detected with accurate bounding boxes.
However, the narrow radar pulses that may exist within 5G
and LTE frequency boundaries might be missed, or if detected,
the bounding boxes might not be accurate. These pulses have
less than 2 MHz of bandwidth and occupy less than 2% of
the spectrogram frequency content, and hence, might not be
detected accurately by YOLO in stage 1.

To solve this issue, we propose a second stage of YOLOv3
spectrogram processing for fine signal detection.

C. Stage 2: Fine Signal Detection

For finer detection of narrower signals, we further analyze
the signals that are detected in stage 1. We increase the scale of
the narrow signals that potentially exist within the boundaries
detected in stage 1, by stretching the detected signal along the
frequency axis. As explained in Section IV-B, the predicted
bounding box of the detected signal might not be accurate.
Therefore, if the detected signal is cropped using the predicted
boundaries, portions of the signal might be lost, as shown
in Fig. 4 (b). To prevent this, we consider a margin of λ
pixels at each side of the predicted bounding box to account
for inaccurate bounding box prediction, and ensure that the
original signal is fully within the cropped spectrogram. Next,
the cropped spectrogram is stretched along the frequency axis
(horizontally) so that it is now the same width as the original
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100 MHz spectrogram. This stretched spectrogram with the
stretched (and more visible) signal inside it is then fed to
another YOLOv3 framework, denoted as YOLOv3_fine, for
more accurate localization of the signal within it. The proper
cropping and stretching of the detected signal is shown in
Fig. 4 (b).

To train YOLOv3_fine, we take the training set of
YOLOv3_coarse in stage 1, and crop out the independent
signals from their true boundaries plus the λ margins on their
sides. Independent signals include all LTE/5G signals and
those radar pulses that do not overlap with LTE/5G signals.
We stretch the cropped portion of the spectrogram horizontally
to match the width of stage 1 spectrograms. In this way, the
training set spectrograms for YOLOv3_fine is structured the
same way that the test spectrograms will be structured.
Determining λ: We define λ as the margin at both sides
of the predicted bounding boxes and use it to ensure the
original signal is fully within the cropped image, even if the
predicted boundaries are not accurate. Proper determination
of this margin is essential for increasing the performance of
YOLOv3_fine at stage 2. We determine a specific λ per
signal type by testing the trained YOLOv3_coarse on the
validation set spectrograms. We compare the predicted bound-
ing boxes against the true bounding boxes, and record pixel er-
rors at both frequency borders. After passing all the validation
set spectrograms through the trained YOLOv3_coarse and
recording all the pixel errors, we calculate λ as the maximum
of pixel errors for each signal type. We achieve 3 λ values,
one for each signal type. These λs are used for properly
cropping each signal, and preparing a cropped and stretched
spectrogram for YOLOv3_fine, during training and during
testing it after stage 1 coarse detection.

V. EVALUATION

We shuffle our dataset of 1300+ spectrograms and partition
it into 70%, 10%, and 20% to construct training, validation,
and test sets, respectively. We train YOLOv3_coarse for
stage 1 and YOLOv3_fine for stage 2, using the training
set and the stretched version of the training set, respectively,
as described in Section IV.

A. Metrics
We use the following object detection metrics for statisti-

cally evaluating our proposed 2-stage ESC+.
Recall: Recall is the ratio of true positives to the total number
of signals in all the test set spectrograms.
Intersection over Union (IoU): For each detected signal
with predicted bounding box, IoU is the area where the true
bounding box and the predicted one overlap, divided by the
area of their union.
False Positives (FPs): In our experiments, FPs are the detected
objects whose predicted bounding boxes have no overlap with
true bounding boxes of the object with the same labels (i.e.,
IoU < 0.001).
Average Precision (AP): Average Precision for each label is
the true positive count divided by the total number of positives
for that label.

TABLE I: Different performance metrics for different signal
types of radar, 5G, and LTE after stage 1 and after stage 2.
The metrics are calculated over all SINRs in the test set from
15 to 30 dB.

Metric Signal Type
Radar 5G LTE

Stage 1

Recall 98% 100% 100%
Average IoU 0.75 0.95 0.94
False Positives 30 1 1
Average Precision 0.89 0.99 0.99

Stage 2

Recall 99% 100% 100%
Average IoU 0.85 0.97 0.97
False Positives 10 0 0
Average Precision 0.96 1.00 1.00

B. Evaluation of Stage 1

After the training of YOLOv3_coarse is completed, we
perform stage 1 (coarse object detection) on the test set as
shown in Fig. 3, and calculate the aforementioned metrics for
stage 1 that are shown in Table I. For evaluation, we set IoU
threshold to a small value of 0.001, which ensures that any
detected object with a certain label whose predicted bounding
box has the slightest overlap with true bounding box of an
object with the same label is counted as true positive. We
observe 100% recall for 5G and LTE signals, and 98% recall
for radar. The high recall for 5G and LTE compared to radar is
due to their more widely spread energy and higher bandwidth
of 5G and LTE signals compared to narrow and sparse radar
pulses that are more difficult to detect, as seen in Fig. 2.

C. Evaluation of Stage 2

To suitably tailor the training set for YOLOv3_fine in
stage 2, we need to calculate λ for each signal type. To do
this, we test YOLOv3_coarse on the validation set, and
record pixel errors. We calculate λ values as the maximum
of pixel errors for each signal type over the whole valida-
tion set, and achieve numerical values of 13, 8, and 9, for
radar, 5G, and LTE, respectively. We crop and stretch the
training set using these values, and train YOLOv3_fine with
the stretched training set. Similarly, in the test phase after
YOLOv3_coarse detection, we use the same λ values as
margins to crop the predicted objects, as shown in Fig. 4.
Next, we stretch the cropped spectrograms to have the same
pixel width as the stage 1 spectrograms and feed them to
YOLOv3_fine at stage 2.

To evaluate stage 2, first, we show the effect of our 2-stage
signal detection by illustrating an example spectrogram with
YOLOv3 bounding boxes after stage 1 and stage 2 in Fig. 6.
We observe that the narrow radar signal within the wider 5G
is missed in stage 1, as shown in Fig. 6 (a). However, after
proper cropping and stretching the spectrogram as described
in Section IV and proceeding through stage 2, we observe that
the radar pulse is detected in Fig. 6 (b).
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(a) (b)

Fig. 6: An example of YOLOv3 output bounding boxes during
test (a) After stage 1, where the narrow radar signal within the
5G signal is missed, and (b) After stage 2, where the stretched
radar is detected.

Next, similar to stage 1, we calculate the aforementioned
metrics for stage 2 and show them in Table I. We observe
that stage 2 improves the coarse signal detection metric of
recall by 1% for radar. Furthermore, average IoU is increased
by 13%, 2%, and 3% for radar, 5G, and LTE, respectively.
Similarly, FPs are decreased by 66% for radar signals, while
they become 0 for LTE and 5G signals.

We further calculate recall and average IoU per SINR for
radar pulses and present them in Fig. 5. Compared to the
standard ESC that promises 99% radar detection in SINRs 20
dB and higher [3], our results provide 100% radar detection in
SINR 17 dB and higher, which indicates 3 dB higher noise and
interference than the standard. We also observe average IoU
of around 0.84 for radar detection in different SINRs between
15 dB to 20 dB. This implies that we are able to detect radar
signals in environments with 3 dB higher noise compared to
what is realized today in whisper zones.
Achievements: Our proposed ESC+ achieves recall of 100%
for radar, 5G, and LTE signals in SINRs of 17 dB and higher,
which shows that FCC regulations regarding secondary user
transmission power in the CBRS band in whisper zones can
be reduced by 3 dB. This higher transmission power can
potentially improve cellular connectivity for 5G and LTE
networks in the whisper zone.

VI. CONCLUSION

In this paper, we proposed an enhanced ESC sensor, called
ESC+, for detecting signals using the spectrograms of the
CBRS band. The proposed ESC+ is based on YOLOv3 object
detection framework and leverages a two-stage design to

perform coarse and fine signal detection, respectively. The
proposed ESC+ can detect wide and narrow radars (incumbent
users) and LTE/5G signals (PAL users) in complex setting and
in close spectral proximity. By achieving 100% radar pulse
detection in SINR 17 dB, which is 3 dB below the standard
SINR, we show the possibility for relaxing FCC regulations
related to transmission power in whisper zones. Our proposed
design will allow the LTE/5G networks to transmit with higher
power, potentially resulting in better connectivity to end users.
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